Automated comparison system of the technical and economic efficiency of electric drives of crane mechanisms

Authors

DOI:

https://doi.org/10.15587/1729-4061.2016.66784

Keywords:

electric drive, CAD-system for technical and economic comparison, resistor control, voltage converter, frequency converter, resistor braking

Abstract

Various types of the AC electric drive: traditional one with resistor control, with thyristor voltage converter and with frequency converter, the latter with power recovery are considered. The review of static and dynamic characteristics of each of the electric drives is presented, based on which recommendations are made concerning the application of a particular asynchronous electric drive of the proposed options in specific cases. Energy performance, loss in the motor circuits are calculated for specific crane hoist mechanisms.

The CAD-system for technical and economic comparison of the crane drives taking into account the main operation features: loads, moments of inertia with/without load, the relative operating time with reduced speed is developed. Due to the unification of approaches to the analysis of the operating conditions of the hoist and swing mechanisms, the program calculates the power consumption in static and dynamic modes. Known capital and depreciation costs and total annual power losses obtained in the CAD-system allow making decisions about the choice or necessity of reconstruction of the electric drive.

Author Biographies

Victor Busher, Odessa National Polytechnic University 1 Shevchenko ave., Odessa, Ukraine, 65044

Doctor of Technical Sciences, Professor

Department of electromechanical systems with computer control

Svetlana Savich, Odessa National Polytechnic University 1 Shevchenko ave., Odessa, Ukraine, 65044

PhD, Associate Professor

Department of Electrical Power Supply and Energy Management 

Svyatoslav Savich, Odessa National Polytechnic University 1 Shevchenko ave., Odessa, Ukraine, 65044

PhD, Associate Professor

Department of Technology Inorganic Substances and Ecology

Vadym Medvediev, Odessa National Polytechnic University 1 Shevchenko ave., Odessa, Ukraine, 65044

Department of Electrical Power Supply and Energy Management 

References

  1. Javied, T., Rackow, T., Stankalla, R., Sterk, C., Franke, J. (2016). A Study on Electric Energy Consumption of Manufacturing Companies in the German Industry with the Focus on Electric Drives. Procedia CIRP, 41, 318–322. doi: 10.1016/j.procir.2015.10.006
  2. Raubar, E., Vrancic, D. (2012). Anti-Sway System for Ship-to-Shore Cranes. Journal of Mechanical Engineering, 58 (5), 338–344. doi: 10.5545/sv-jme.2010.127
  3. Miller, P., Olateju, B., Kumar, A. (2012). A techno-economic analysis of cost savings for retrofitting industrial aerial coolers with variable frequency drives. Energy Conversion and Management, 54 (1), 81–89. doi: 10.1016/j.enconman.2011.09.018
  4. Usynin, Y. S., Valov, A. V., Kozina, T. A. (2011). Asynchronous electric drive with pulse-vector control. Russian Electrical Engineering, 82 (3), 134–137. doi: 10.3103/s1068371211030102
  5. Emelyanov, A. P., Kozyaruk, A. E. (2011). Algorithms for management, modeling, and analysis of highly dynamical asynchronous electric drives. Russian Electrical Engineering, 82 (2), 61–68. doi: 10.3103/s1068371211020052
  6. Tunyasrirut, S., Kinnares, V. (2013). Speed and Power Control of a Slip Energy Recovery Drive Using Voltage-source PWM Converter with Current Controlled Technique. Energy Procedia, 34, 326–340. doi: 10.1016/j.egypro.2013.06.761
  7. Nicolae, P.-M., Stanescu, D.-G., Sirbu, I.-G. (2008). About the experimental results of an electric driving system based on asynchronous motor and PWM converter. 2008 13th International Power Electronics and Motion Control Conference. doi: 10.1109/epepemc.2008.4635428
  8. Nicolae, P.-M., Stanescu, D.-G., Sirbu, I.-G. (2008). About the experimental results of an electric driving system based on asynchronous motor and PWM converter. 2008 13th International Power Electronics and Motion Control Conference, 259–274. doi: 10.1109/epepemc.2008.4635428
  9. Blanusa, B. (2010). New Trends in Efficiency Optimization of Induction Motor Drives. New Trends in Technologies: Devices, Computer, Communication and Industrial Systems. doi: 10.5772/10427
  10. Grygorov, O. V., Svyrgun, V. P., Stryzhak, V. V., Zajcev, Ju. I. (2010). Energozberezhennja shljahom zastosuvannja racional'nogo keruvannja asynhronnyh elektropryvodiv VPM. Sbornyk nachnih trudov «Vestnyk NTU «HPY»: Tehnologii' v mashynobuduvanni, 49, 61–64.
  11. Grygorov, O. V., Zaytsev, Y. I., Svirgun, V. P., Stryzhak, V. V. (2010). Realization of energy-saving control modes on cranes of great load-carrying capacity. Annals of the University of Petroşani: Mechanical Engineering, 12, 111–118.
  12. Zalizec'kyj, A. M., Piznjur, O. V. (2012). Doslidzhennja chastotnogo elektropryvoda v statychnyh rezhymah roboty. Visnyk Hmel'nyc'kogo nacional'nogo universytetu, 3, 69–74.
  13. Firago, B. I., Vasil'ev, D. S. (2011). Primenenie ustrojstv plavnogo puska i tormozhenija asinhronnyh jelektricheskih dvigatelej s k.z. rotorom v jelektroprivodah kranovyh mehanizmov peredvizhenija. Elektrotehnicheskie i komp'juternye sistemy, 4 (80), 30–38.
  14. Radimov, S. N., Anichenko, K. A. (2006). Potencial jenergosberezhenija jelektroprivodov portovyh gruzopod’emnyh mashin. Elektromashinobuduvannja ta elektroobladnannja, 66, 322–323.
  15. Moshhinskij, Ju. A., Aung, Vin Tut (2007). Obobshhennaja matematicheskaja model' chastotno-reguliruemogo asinhronnogo dvigatelja s uchetom poter' v stali. Jelektrotehnika, 11, 61–66.
  16. Braslavskyj, I. Ja., Ishmatov, Z. Sh. (2003). Realizacija energooshhadnyh tehnologij na osnovi regul'ovanyh asynhronnyyh elektropryvodov. Elektroinform, 3, 11–15.
  17. Grygorov, O. V., Stryzhak, V. V. (2012). Analiz pusko-gal'mivnyh procesiv kranovyh mehanizmiv z chastotno-regul'ovanym pryvodom. Vestnyk HNADU, 57, 249–256.
  18. Savych, S. P. (2012). Porivnjannja ekonomichnoi' efektyvnosti al'ternatyvnyh elektropryvodiv u nestacionarnyh rezhymah. Elektrotehnichni ta komp’juterni systemy, 07 (83), 50–55.
  19. Gerasymiak, R., Busher, V., Savich, S., Shvets, L. (2012). Computer-aided Design System for Technical and Economical Comparison of Crane Electrical Drives. Computational Problems of Electrical Engineering, 2, 21–25.
  20. Braslavskij, I. Ja., Ishmatov, Z. Sh., Poljakov, V. N. (2004). Jenergosberegajushhij asinhronnyj jelektroprivod. Moscow: ASADEMA, 202.
  21. Gerasymjak, R. P., Savych, S. P., Shvec, L. A. (2011). Ekonomichna efektyvnist' vykorystannja peretvorjuvachiv chastoty dlja kranovyh mehanizmiv pidjomu. Elektrotehnichni ta komp’juterni systemy, 03 (79), 392–393.
  22. SINAMICS G110, SINAMICS G120. Standartnye preobrazovateli. SINAMICS G 110 D, SINAMICS G 120 D. Decentralizovannye preobrazovateli. Katalog D 11.1.2009.
  23. Altivar 71. Preobrazovateli chastoty (2009). Schneider Electric, 332.

Published

2016-04-24

How to Cite

Busher, V., Savich, S., Savich, S., & Medvediev, V. (2016). Automated comparison system of the technical and economic efficiency of electric drives of crane mechanisms. Eastern-European Journal of Enterprise Technologies, 2(8(80), 37–49. https://doi.org/10.15587/1729-4061.2016.66784

Issue

Section

Energy-saving technologies and equipment