Influence of low rubber compressibility on the sealing element of a downhole packer

Authors

  • Vasif Talibov Mamedov Azerbaijan State University of Oil and Industry 20 Azadlig ave., Baku, Azerbaijan, AZ1010, Azerbaijan
  • Seyfulla Ramiz oglu Gurbanov Azerbaijan Republican Oil Company (SOCAR) 73 Neftennikov ave., Baku, Azerbaijan, AZ1000, Azerbaijan

DOI:

https://doi.org/10.15587/1729-4061.2016.67147

Keywords:

low-compressibility rubber, downhole packer, Lagrange principle, toughening factor, normal and shear stresses

Abstract

The variational Lagrange principle and the Kantorovich method are applied in calculating the downhole packer sealing process with the influence of low rubber compressibility. The dependence between the sealing ratio and the stress ratio on the geometric parameters of the sealing element of the downhole packer is determined. It is found that the sealing effect of end faces leads to a significant difference in the stress-strain state of the packer seal assembly from uniaxial compression. Rubber is an elastic material in the entire load range. However, with increasing strain there is increasing deviation from the linear relationship between stress and strain, despite the fact that rubber remains an elastic material, and the relationship between stress and strain becomes nonlinear.

The incompressibility should be considered as the property of rubber to maintain a constant volume under any strain. Volume decrease under higher strain is associated with the change in the physical state of rubber due to crystallization. The compressibility effect may become noticeable only in special structures, in downhole packers, so in this case the problem is divided into two: 1) the solution of the problem in the case of an incompressible material; 2) the solution of the problem, corresponding only to the three-dimensional compression, when the  strain  Еij=const, if loads are large enough and the rubber compressibility has to be taken into account. It is shown that strain in many designs of downhole packers should be written based on precisely this dependence, because the lateral strain in the seals appears constrained so that a large volume of rubber is under uniform compression. In this case, the assumption of absolute incompressibility of rubber can lead to a significant overestimation of the seal rigidity.

Author Biographies

Vasif Talibov Mamedov, Azerbaijan State University of Oil and Industry 20 Azadlig ave., Baku, Azerbaijan, AZ1010

Doctor of Technical Sciences, Professor, Head of Department

Department "Oil and gas equipment"

Seyfulla Ramiz oglu Gurbanov, Azerbaijan Republican Oil Company (SOCAR) 73 Neftennikov ave., Baku, Azerbaijan, AZ1000

PhD

References

  1. Chervinskij, V. P., Gal'chenko, A. S., Mel'nik, N. V. (2010). About perfection of details compaction of underground downhole equipment complexes. Eastern-European Journal of Enterprise Technology, 4/6 (46), 28–30. Available at: http://journals.uran.ua/eejet/article/view/2995/2798
  2. Polonskij, V. L., Tjurin, A. P. (2012). Osobennosti raboty rezinovyh uplotnenij – pakerov //Sovremennoe mashinostroenie. nauka i obrazovanie, 2, 592–597.
  3. Uplotnenija i uplotnitel'naja tehnika: Spravochnik. 2nd edition (1994). Moscow: Mashinostroenie, 445.
  4. Poturayev, V. N. (1966). Rubber and rubber-metallic machine components. Moscow: “Machinebuilding”.
  5. Kurenov, M. V., Eliseev, D. V. (2012). Osobennosti ispol'zovanija razbuhajushhih pakerov dlja razobshhenija gorizontal'nyh uchastkov skvazhin na shel'fe Kaspijskogo morja. Vestnik AGTU, 2 (52), 69–71.
  6. Avanesov, V. A., Moskaleva, E. M. (2008). Pakery dlja provedenija tehnologicheskih operacij i jekspluatacii skvazhin. UGTU Uhta, 91.
  7. Han, C., Zhang, J. (2013). Study on well hard shut-in experiment based on similarity principle and erosion of ram rubber. Engineering Failure Analysis, 32, 202–208. doi: 10.1016/j.engfailanal.2013.03.016
  8. Zhai, C., Hao, Z., Lin, B. (2011). Research on a New Composite Sealing Material of Gas Drainage Borehole and Its Sealing Performance. Procedia Engineering, 26, 1406–1416. doi: 10.1016/j.proeng.2011.11.2318
  9. Chandrasekaran, V. C. (2010). Rubber Seals for Oil Field Service. Rubber Seals for Fluid and Hydraulic Systems, 45–55. doi: 10.1016/b978-0-8155-2075-7.10005-x
  10. Liu, Q., Cheng, Y., Yuan, L., Fang, Y., Shi, D., Kong, S. (2014). A new effective method and new materials for high sealing performance of cross-measure CMM drainage boreholes. Journal of Natural Gas Science and Engineering, 21, 805–813. doi: 10.1016/j.jngse.2014.10.023
  11. Parker's rubber materials extend seal life in harsh environments (2015). Sealing Technology, 2015 (7), 2. doi: 10.1016/s1350-4789(15)30185-9
  12. Cybin, A. A., Cybin, S. A. (2008). Kreplenie skvazhin i razobshhenie plastov gidravlicheskimi pakerami s metallicheskimi uplotnitel'nymi jelementami. Nauchno-tehnicheskij zhurnal «Inzhener-neftjanik», 4, 21–23.
  13. Al-Hiddabi, S. A., Pervez, T., Qamar, S. Z., Al-Jahwari, F. K., Marketz, F., Al-Houqani, S., van de Velden, M. (2015). Analytical model of elastomer seal performance in oil wells. Applied Mathematical Modelling, 39 (10-11), 2836–2848. doi: 10.1016/j.apm.2014.10.028
  14. Zeng, D., Yang, X., Zhu, D., Zhang, Z., Cao, D., Chong, X., Shi, T. (2012). Corrosion Property Testing of AFLAS Rubber under The Simulation modes of High Acid Gas Wells. Energy Procedia, 16, 822–827. doi: 10.1016/j.egypro.2012.01.132
  15. Yamabe, J., Nishimura, S. (2012). Hydrogen-induced degradation of rubber seals. Gaseous Hydrogen Embrittlement of Materials in Energy Technologies, 769–816. doi: 10.1533/9780857093899.3.769
  16. Guan, H., Yang, F., Wang, Q. (2011). Study on evaluation index system of rubber materials for sealing. Materials & Design, 32 (4), 2404–2412. doi: 10.1016/j.matdes.2010.12.030
  17. Rubber and PEEK polymer-based composite developed for sealing applications (2011). Sealing Technology, 2011 (12), 2–3. doi: 10.1016/s1350-4789(11)70407-x
  18. Aksenov, A., Kon'shin, V. (2006). Analiz zadach vzaimodejstvija «zhidkost' – konstrukcija» s ispol'zovaniem programmnyh kompleksov ABAQUS i FlowVision. SAPR i grafika, 9, 20–24.
  19. Kropotin, O. V. (2012). Metodika prognozirovanija nadezhnosti i resursa podvizhnyh germetizirujushhih ustrojstv s uchetom formoizmenenija jelementov v processe frikcionnogo vzaimodejstvija. Izvestija Samarskogo nauchnogo centra RAN, 14 (4 (5)), 1253–1256.
  20. Panchenko, A. Ju., Shil'ko, E. V., Astafurov, S. V., Korostelev, S. Ju., Psah'e, S. G. (2008). Razvitie formalizma metoda chastic dlja rascheta uslovij na granice razdela tverdogo tela s zhidkoj sredoj. Izvestija Tomskogo politehnicheskogo universiteta, 313 (2), 85–90.
  21. Kropotin, O. V., Mashkov, Ju. K., Kurguzova, O. A., Shil'ko, S. V. (2013). Optimizacija konstrukcii germetizirujushhego ustrojstva s ispol'zovaniem metoda issledovanija prostranstva parametrov. Omskij nauchnyj Vestnik, 3 (123), 101–104.
  22. Koltunov, M. A., Trojanovskij, I. E. (1977). Geometricheskie nelinejnaja zadacha teorii vjazko uprugosti. Mehanika jelastomerov. Vol. 1. Krasnodar. izvd. Kubin. Gos. Un-ta, 36–46.
  23. Kvitka, A. L., Voroshko, P. P., Bobrickaja, S. D. (1977). Naprjazhenno deformirovannoe sostojanie tel vrashhenija. Kyiv, Naukova dumka, 208.
  24. Sniegs, M. I. (1974). Reshenie nekotoryh osesimmetrichnyh zadach teorii uprugosti dlja neszhimaemogo materiala metodom konechnyh jelementov. Vopr. Dinamiki i prochnosti, 30, 116–119.
  25. Chernyh, K. F., Shubina, I. M. (1977). Zakony uprugosti dlja izotronnyh nezhimaemyh materialov V kn: mehanika jelastomerov. Vol. 1. Krasnodar. izv. Kubin. Gos. Un-ta, 54–64.
  26. Glud, S. (1970). Variacionnye metody v zadachah o sobstvennyh znachenijah. Moscow: Mir, 328.
  27. Il'jushin, A. A., Pobed'ja, B. E. (1970). Osnovy matematicheskoj teorii termovjazkoj uprugosti. Moscow: Nauka, 280.
  28. Moskvitin, V. V. (1972). Soprotivlenie vjazko uprugih materialov. Moscow: Nauka, 263.
  29. Reissner, F. (1961). On come variational theorems in elasticity problems of contirium mechanice. Philadelphia, 354.
  30. Jeglajs, V. O. (1980). Algoritm intuitivnogo poiska dlja optimizacii slozhnyh sistem. Voprosy Dinamiki i prochnosti, 28–33.
  31. Pavlovskij, A. A., Gluhih, S. A. (1977). Primenenie variacionnogo principa rejsenera v zadache o kinematicheskom vozbuzhdenii rezinometallicheskogo amortizatora. Voprosy Dinamiki i prochnosti, 35, 124–130.
  32. Mixlin, S. G. (1970). Variational methods in mathematical physics. Moscow: Science.

Published

2016-04-23

How to Cite

Mamedov, V. T., & Gurbanov, S. R. oglu. (2016). Influence of low rubber compressibility on the sealing element of a downhole packer. Eastern-European Journal of Enterprise Technologies, 2(7(80), 70–78. https://doi.org/10.15587/1729-4061.2016.67147

Issue

Section

Applied mechanics