Developing a model of the foam emulsion system and confirming the role of the yield stress shear of interfacial adsorption layers to provide its formation and stability

Authors

  • Andrii Goralchuk Kharkiv State University of Food Technology and Trade 333 Klochkivska str., Kharkiv, Ukraine, 61051, Ukraine https://orcid.org/0000-0003-2442-7642
  • Svetlana Omel'chenko Kharkiv State University of Food Technology and Trade 333 Klochkivska str., Kharkiv, Ukraine, 61051, Ukraine https://orcid.org/0000-0003-3635-6626
  • Oleg Kotlyar Kharkiv State University of Food Technology and Trade 333 Klochkivska str., Kharkiv, Ukraine, 61051, Ukraine https://orcid.org/0000-0002-4818-4967
  • Olga Grinchenko Kharkiv State University of Food Technology and Trade 333 Klochkivska str., Kharkiv, Ukraine, 61051, Ukraine
  • Valeriy Mikhaylov Kharkiv State University of Food Technology and Trade 333 Klochkivska str., Kharkiv, Ukraine, 61051, Ukraine https://orcid.org/0000-0003-4335-1751

DOI:

https://doi.org/10.15587/1729-4061.2016.69384

Keywords:

interfacial adsorption layer, yield stress shear, whipped emulsion, foaming capacity

Abstract

The model of the formation of the foam emulsion by the emulsion whipping was developed. It was experimentally proved that the yield stress shear of interfacial adsorption layers can be used as a criterion for evaluating the stability of foams, emulsions and foam-emulsion systems. It was found that the introduction of DATEM to the reconstituted skimmed milk increases the yield stress shear of interfacial adsorption layers and stability of foams and emulsions. The introduction of lecithin's or DATEM reduces the yield stress shear of interfacial adsorption layers and stability of foams and emulsions accordingly. Simultaneous use of milk proteins, LACTEM, lecithin's and DATEM provides 1.3 times higher yield stress shear of interfacial adsorption layers at the water-air interface than at the water-oil interface, which is a thermodynamic condition for the formation of the foam emulsion by the emulsion whipping. It was proved that homogenization of the emulsion based on cocoa butter, milk proteins and surfactants provides destabilization of the emulsion and creates conditions for the flotation of destabilized fat particles.

The results allow justifying the parameters of the technology of the whipped semi-finished product based on cocoa butter, which is the emulsion whipping of which provides the foaming capacity of 450±22 %, the mechanical strength of the foam emulsion of 3200±160 Pa. It was confirmed that the whipping process can be divided into three stages: foaming, emulsion destabilization and adhesion of fat particles to air bubbles, providing high mechanical strength of the foam emulsion.

Author Biographies

Andrii Goralchuk, Kharkiv State University of Food Technology and Trade 333 Klochkivska str., Kharkiv, Ukraine, 61051

PhD, Associate Professor

Department of Food Technology 

Svetlana Omel'chenko, Kharkiv State University of Food Technology and Trade 333 Klochkivska str., Kharkiv, Ukraine, 61051

Senior Lecturer

Department of Food Technology 

Oleg Kotlyar, Kharkiv State University of Food Technology and Trade 333 Klochkivska str., Kharkiv, Ukraine, 61051

PhD, Аssistant

Department of Food Technology 

Olga Grinchenko, Kharkiv State University of Food Technology and Trade 333 Klochkivska str., Kharkiv, Ukraine, 61051

Doctor of Technical Sciences, Professor

Department of Food Technology 

Valeriy Mikhaylov, Kharkiv State University of Food Technology and Trade 333 Klochkivska str., Kharkiv, Ukraine, 61051

Doctor of Technical Sciences, Professor

Department of Processes, apparatus and automation of food production

References

  1. Carr, N. O., Hogg, W. F. (2005). A manufacturer ’ s perspective on selected palm-based products. Asia Pac J Clin Nutr, 14 (4), 381–386.
  2. Allen, K. E., Murray, B. S., Dickinson, E. (2008). Development of a model whipped cream: Effects of emulsion droplet liquid/solid character and added hydrocolloid. Food Hydrocolloids, 22 (4), 690–699. doi: 10.1016/j.foodhyd.2007.01.017
  3. Hotrum, N. E., Cohen Stuart, M. A., van Vliet, T., van Aken, G. A. (2004). Spreading of partially crystallized oil droplets on an air/water interface. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 240 (1-3), 83–92. doi: 10.1016/s0927-7757(04)00172-4
  4. Brun, M., Delample, M., Harte, E., Lecomte, S., Leal-Calderon, F. (2015). Stabilization of air bubbles in oil by surfactant crystals: A route to produce air-in-oil foams and air-in-oil-in-water emulsions. Food Research International, 67, 366–375. doi: 10.1016/j.foodres.2014.11.044
  5. Fainerman, V. B., Aksenenko, E. V., Lylyk, S. V., Lotfi, M., & Miller, R. (2015). Adsorption of Proteins at the Solution/Air Interface Influenced by Added Nonionic Surfactants at Very Low Concentrations for Both Components. 3. Dilational Surface Rheology. J. Phys. Chem. B, 119 (9), 3768–3775. doi: 10.1021/acs.jpcb.5b00136
  6. Burke, J., Cox, A., Petkov, J., Murray, B. S. (2014). Interfacial rheology and stability of air bubbles stabilized by mixtures of hydrophobin and β-casein. Food Hydrocolloids, 34, 119–127. doi: 10.1016/j.foodhyd.2012.11.026
  7. López-Castejón, M. L., de la Fuente, J., Ruiz, M., Guerrero, A. (2012). Influence of the presence of monoglyceride on the interfacial properties of soy protein isolate. Journal of the Science of Food and Agriculture, 92 (13), 2618–2623. doi: 10.1002/jsfa.5674
  8. Fredrick, E., Heyman, B., Moens, K., Fischer, S., Verwijlen, T., Moldenaers, P. et. al. (2013). Monoacylglycerols in dairy recombined cream: II. The effect on partial coalescence and whipping properties. Food Research International, 51 (2), 936–945. doi: 10.1016/j.foodres.2013.02.006
  9. Phan, T. T. Q., Asaduzzaman, M., Le, T. T., Fredrick, E., Van der Meeren, P., Dewettinck, K. (2013). Composition and emulsifying properties of a milk fat globule membrane enriched material. International Dairy Journal, 29 (2), 99–106. doi: 10.1016/j.idairyj.2012.10.014
  10. Kotlyar, O., Goralchuk, A., Grinchenko, O. (2014). The Study of Surface-Active Agents’ Impact on the Strength of Interfacial Adsorption Layers. The Advanced Science Journal, 2014 (10), 37–42. doi: 10.15550/asj.2014.10.037
  11. Eisner, M. D., Jeelani, S. A. K., Bernhard, L., Windhab, E. J. (2007). Stability of foams containing proteins, fat particles and nonionic surfactants. Chemical Engineering Science, 62 (7), 1974–1987. doi: 10.1016/j.ces.2006.12.056
  12. Petkov, J. T., Gurkov, T. D., Campbell, B. E. (2001). Measurement of the Yield Stress of Gellike Protein Layers on Liquid Surfaces by Means of an Attached Particle. Langmuir, 17 (15), 4556–4563. doi: 10.1021/la001347i
  13. Karbaschi, M., Lotfi, M., Krägel, J., Javadi, A., Bastani, D., Miller, R. (2014). Rheology of interfacial layers. Current Opinion in Colloid & Interface Science, 19 (6), 514–519. doi: 10.1016/j.cocis.2014.08.003
  14. Langevin, D. (2000). Influence of interfacial rheology on foam and emulsion properties. Advances in Colloid and Interface Science, 88 (1-2), 209–222. doi: 10.1016/s0001-8686(00)00045-2
  15. Langevin, D., Marquez-Beltran, C., Delacotte, J. (2011). Surface force measurements on freely suspended liquid films. Advances in Colloid and Interface Science, 168 (1-2), 124–134. doi: 10.1016/j.cis.2011.03.007
  16. Santini, E., Ravera, F., Ferrari, M., Stubenrauch, C., Makievski, A., Krägel, J. (2007). A surface rheological study of non-ionic surfactants at the water–air interface and the stability of the corresponding thin foam films. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 298 (1-2), 12–21. doi: 10.1016/j.colsurfa.2006.12.004
  17. Lexis, M., Willenbacher, N. (2014). Yield stress and elasticity of aqueous foams from protein and surfactant solutions – The role of continuous phase viscosity and interfacial properties. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 459, 177–185. doi: 10.1016/j.colsurfa.2014.06.030
  18. Maldonado-Valderrama, J., Martín-Rodriguez, A., Gálvez-Ruiz, M. J., Miller, R., Langevin, D., Cabrerizo-Vílchez, M. A. (2008). Foams and emulsions of β-casein examined by interfacial rheology. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 323 (1-3), 116–122. doi: 10.1016/j.colsurfa.2007.11.003
  19. Aksenenko, E. V., Kovalchuk, V. I., Fainerman, V. B., Miller, R. (2006). Surface dilational rheology of mixed adsorption layers at liquid interfaces. Advances in Colloid and Interface Science, 122 (1-3), 57–66. doi: 10.1016/j.cis.2006.06.012
  20. Derkach, S. R., Krägel, J., Miller, R. (2009). Methods of measuring rheological properties of interfacial layers (Experimental methods of 2D rheology). Colloid Journal, 71 (1), 1–17. doi: 10.1134/s1061933x09010013
  21. Pelipenko, J., Kristl, J., Rošic, R., Baumgartner, S., Kocbek, P. (2012). Interfacial rheology: An overview of measuring techniques and its role in dispersions and electrospinning. Acta Pharmaceutica, 62 (2), 123-140. doi: 10.2478/v10007-012-0018-x
  22. Danov, K. D., Kralchevsky, P. A., Radulova, G. M., Basheva, E. S., Stoyanov, S. D., Pelan, E. G. (2015). Shear rheology of mixed protein adsorption layers vs their structure studied by surface force measurements. Advances in Colloid and Interface Science, 222, 148–161. doi: 10.1016/j.cis.2014.04.009
  23. Martin, A., Bos, M., Cohen Stuart, M., van Vliet, T. (2002). Stress−Strain Curves of Adsorbed Protein Layers at the Air/Water Interface Measured with Surface Shear Rheology. Langmuir, 18 (4), 1238–1243. doi: 10.1021/la011176x
  24. Izmajlova, V. N., Jampol'skaja, G. P., Summ, B. D. (1988). Poverhnostnye javlenija v belkovyh sistemah. Moscow: Himija, 240. Available at: https://books.google.com.ua/books?id=rPOWtwAACAAJ
  25. Denkov, N. D., Marinova, K. G., Tcholakova, S. S. (2014). Mechanistic understanding of the modes of action of foam control agents. Advances in Colloid and Interface Science, 206, 57–67. doi: 10.1016/j.cis.2013.08.004
  26. Omelchenko, S., Horalchuk, A., Hrynchenko, O. (2014). Argumentation of Emulsifier Part in the Recipe of Foam and Emulsion Dairy Products Containing Vegetable Fats. The Advanced Science Journal, 2014 (7), 28–32. doi: 10.15550/asj.2014.07.028

Downloads

Published

2016-06-16

How to Cite

Goralchuk, A., Omel’chenko, S., Kotlyar, O., Grinchenko, O., & Mikhaylov, V. (2016). Developing a model of the foam emulsion system and confirming the role of the yield stress shear of interfacial adsorption layers to provide its formation and stability. Eastern-European Journal of Enterprise Technologies, 3(11(81), 11–19. https://doi.org/10.15587/1729-4061.2016.69384

Issue

Section

Technology and Equipment of Food Production