A study of synthesis and properties of manganese-containing oxide coatings on alloy VT1-0

Authors

DOI:

https://doi.org/10.15587/1729-4061.2016.69390

Keywords:

the VT1–0 alloy, plasma electrolytic oxidation, oxide coatings, manganese, catalytic activity

Abstract

The study has substantiated the choice of components of manganese–containing electrolytes and their rational concentrations as well as determined the current density range for one–step plasma electrolytic oxidation of the VT1–0 alloy. Oxidation with mixed oxides produced coatings of different compositions and surface morphology. It has been shown that control over the chemical and phase compositions of coatings, the surface topography, and the grain size as well as incorporation of manganese oxides into a coating can be achieved by varying the concentration of the electrolyte and the oxidation parameters.

Adding manganese sulfate to a pyrophosphate electrolyte has proved to be valuable for enhancing the content of the alloying component in the oxide layer and for reducing the concentrations of potassium and impurities. An increase in the current density of plasma electrolytic oxidation has been found to promote the formation of the oxide layer with a more developed surface area that is characterized by alternating torus–like inclusions and nanoporous sections. By studying the distribution of the content elements throughout the thickness of the oxide coating, it has been determined that manganese is uniformly distributed in the surface layer, but phosphorus is mainly located at the oxide–solution interface.

It has been found that the synthesized mixed oxide coatings of manganese and titanium are highly resistant to abrasion. Incorporation of manganese has proved to reduce the grain size and improve the surface development, which facilitates catalytic activities in the oxidation reactions of carbon monoxide. The resulting materials can be used in process systems of catalytic purification.

Author Biographies

Nikolay Sakhnenko, National Technical University «Kharkiv Polytechnic Institute» 21 Bagalіya str., Kharkiv, Ukraine, 61002

Doctor of technical sciences, Professor, Head of the Department

Department of Physical Chemistry

Maryna Ved, National Technical University «Kharkiv Polytechnic Institute» 21 Bagalіya str., Kharkiv, Ukraine, 61002

Doctor of technical sciences, Professor

Department of General and Inorganic Chemistry

Ann Karakurkchi, National Technical University «Kharkiv Polytechnic Institute» 21 Bagalіya str., Kharkiv, Ukraine, 61002

PhD

Head of the Research Laboratory of Military Training Faculty

Alexander Galak, National Technical University «Kharkiv Polytechnic Institute» 21 Bagalіya str., Kharkiv, Ukraine, 61002

PhD

Deputy Head of Military Training Faculty for Education and Research – Head of Studies

References

  1. Barros, A. D., Albertin, K. F., Miyoshi, J., Doi, I., Diniz, J. A. (2010). Thin titanium oxide films deposited by e-beam evaporation with additional rapid thermal oxidation and annealing for ISFET applications. Microelectronic Engineering, 87 (3), 443–446. doi: 10.1016/j.mee.2009.06.020
  2. Sakhnenko, N. D., Ved, M. V., Mayba, M. V. (2015). Konversionnyie i kompozitsionnyie pokryitiya na splavah titana: monografiya. Kharkov, NTU «KhPI», 176.
  3. Gordienko, P. S., Gnedenkov, S. V. (1997). Plazmenno-elektroliticheskoe oksidirovanie titana i ego splavov. Vladivostok: Dalnauka, 344.
  4. Yerokhin, A. L., Nie, X., Leyland, A., Matthews, A., Dowey, S. J. (1999). Plasma electrolysis for surface engineering. Surface and Coatings Technology, 122 (2-3), 73–93. doi: 10.1016/s0257-8972(99)00441-7
  5. Suminov, I. V., Belkin, P. N., Epelfeld, A. V., Lyudin, V. B., Krit, B. L., Borisov, A. M. (2011). Plazmenno-elektroliticheskoe modifitsirovanie poverhnosti metallov i splavov. Vol. 1. Moscow: Tehnosfera, 464.
  6. Chernenko, V. I., Snezhko, L. A., Papanova I. I. (1991). Poluchenie pokrytiy anodno-iskrovym elektrolizom. Leningrad: Khimiya, 208.
  7. Rama Krishna, L., Somaraju, K. R., Sundararajan, G. (2003). The tribological performance of ultra-hard ceramic composite coatings obtained through microarc oxidation. Surface and Coatings Technology, 163-164, 484–490. doi: 10.1016/s0257-8972(02)00646-1
  8. Wu, H., Zhang, X., Geng, Z., Ruiqiang Hang, Y. Y., Huang, X., Yao, X., Tang, B., Wu, H. (2014) Preparation, antibacterial effects and corrosion resistant of porous Cu–TiO2 coatings. Applied Surface Science, 308, 43–49.
  9. Terleeva, O. P., Belevantsev, V. I., Slonova, A. I., Boguta, D. L., Rudnev, V. S. (2006). Comparison analysis of formation and some characteristics of microplasma coatings on aluminum and titanium alloys. Protection of Metals, 42 (3), 272–278. doi: 10.1134/s0033173206030106
  10. Umara, A. A., Rahmanb, M. Y. A., Saadb, S. K. M., Salleha, M. M., Oyamac, M. (2013). Preparation of grass-like TiO2 nanostructure thin films: Effect of growth temperature. Applied Surface Science, 270, 109–114. doi: 10.1016/j.apsusc.2012.12.128
  11. Ved, M. V., Sakhnenko, M. D. (2010). Katalitychni ta zakhysni pokryttia splavamy i skladnymy oksydamy: elektrokhimichnyi syntez, prohnozuvannia vlastyvostei: monografiia. Kharkiv: Novoe slovo, 272.
  12. Bykanova, V. V., Sakhnenko, N. D., Ved’, M. V. (2015). Synthesis and photocatalytic activity of coatings based on the Ti x Zn y O z system. Surface Engineering and Applied Electrochemistry, 51 (3), 276–282. doi: 10.3103/s1068375515030047
  13. Rudnev, V. S., Morozova, V. P., Kaidalova, T. A., Nedozorov, P. M. (2007). Iron- and nickel-containing oxide-phosphate layers on aluminum and titanium. Russian Journal of Inorganic Chemistry, 52 (9), 1350–1354. doi: 10.1134/s0036023607090069
  14. Vasilyeva, M. S., Rudnev, V. S. (2014). Composition, Surface Structure and Catalytic Properties of Manganese- and Cobalt-Containing Oxide Layers on Titanium. Advanced Materials Research, 875-877, 351–355. doi: 10.4028/www.scientific.net/amr.875-877.351
  15. Sakhnenko, N. D., Ved’, M. V., Androshchuk, D. S., Korniy S. A. (2016). Formation of Coatings of Mixed Aluminum and Manganese Oxides on the AL25 Alloy. Surface Engineering and Applied Electrochemistry, 52 (2), 145–151. doi: 10.3103/S1068375516020113
  16. Shin, K. R., Ko, Y. G., Shin, D. H. (2011). Effect of electrolyte on surface properties of pure titanium coated by plasma electrolytic oxidation. Journal of Alloys and Compounds, 509, S478–S481. doi: 10.1016/j.jallcom.2011.02.056
  17. Shi, X. L., Wang, Q. L., Wang, F. S., Ge, S. R. (2009). Effects of electrolytic concentration on properties of micro-arc film on Ti6Al4V alloy. Mining Science and Technology, 19, 220–224. doi: 10.1016/s1674-5264(09)60042-9
  18. Ved’, M. V., Sakhnenko, M. D., Bohoyavlens’ka, O. V., Nenastina, T. O. (2008). Modeling of the surface treatment of passive metals. Materials Science, 44 (1), 79–86. doi: 10.1007/s11003-008-9046-6
  19. Kassman, Å., Iacobson, S., Ericson, L., Hedenqvist, P., Olsson, M. (1991). A new test method for the intrinsic abrasion resistance of thin coatings. Surface Coating Technology, 50 (1), 75–84. doi: 10.1016/0257-8972(91)90196-4
  20. Lunarska, E., Cherniayeva, O., Ved, M., Sakhnenko, N. (2007). Oxide film formed on Ti by the microark anodic method. Ochrona przed Korozja, 11A, 265–269.
  21. Ved, M. V., Sakhnenko, N. D. (2007). The Manganese and Cobalt oxides formation on Aluminum alloys. Korroziya: materialy, zaschita, 10, 36–40.
  22. Snytnikov, P. V., Belyaev, V. D., Sobyanin, V. A. (2007). Kinetic Model and Mechanism of the Selective Oxidation of CO in the Presence of Hydrogen on Platinum Catalysts. Kinetics and Catalysis, 48 (1), 93–102. doi: 10.1134/s0023158407010132
  23. Krishna, D. S. R., Sun, Y. (2005). Thermally oxidised rutile-TiO2 coating on stainless steel for tribological properties and corrosion resistance enhancement. Applied Surface Science, 252 (4), 1107–1116. doi: 10.1016/j.apsusc.2005.02.046
  24. Rudnev, V. S., Yarovaya, T. P., Egorkin, V. S., Sinebryukhov, S. L., Gnedenkov, S. V. (2010). Properties of coatings formed on titanium by plasma electrolytic oxidation in a phosphate-borate electrolyte. Russian Journal of Applied Chemistry, 83 (4), 664–670. doi: 10.1134/s1070427210040178

Downloads

Published

2016-06-15

How to Cite

Sakhnenko, N., Ved, M., Karakurkchi, A., & Galak, A. (2016). A study of synthesis and properties of manganese-containing oxide coatings on alloy VT1-0. Eastern-European Journal of Enterprise Technologies, 3(5(81), 37–43. https://doi.org/10.15587/1729-4061.2016.69390