Effect of the state of surface layer on 40х steel fatigue characteristics

Authors

  • Karyna Vakulenko Institute for problems in machinery NAS of Ukraine 2/10 Pozharsky str., Kharkiv, Ukraine, 61046,, Ukraine https://orcid.org/0000-0003-2198-1592
  • Iryna Kazak Institute for problems in machinery NAS of Ukraine 2/10 Pozharsky str., Kharkiv, Ukraine, 61046,, Ukraine https://orcid.org/0000-0002-8672-2789
  • Volodymyr Matsevityi Institute for problems in machinery NAS of Ukraine 2/10 Pozharsky str., Kharkiv, Ukraine, 61046,, Ukraine

DOI:

https://doi.org/10.15587/1729-4061.2016.69644

Keywords:

cyclic loading, surface plastic deformation, healing of defects, fine structure changes

Abstract

Cyclic testing of 40X structural steel with the implementation of the intermediate surface plastic deformation of the samples by the proposed special technique using the striker-ball tool is described. Changing the level of degradation of the material was determined by the coercive force method. The tests were carried out with the purpose to ascertain the possibility of increasing the durability of the material as the result of the surface treatment by reducing the concentration of accumulated fatigue defects.

The test results showed an increase of durability of steel from 3-5 up to 10 times or more (with larger amplitudes), accompanied by a decrease in the values of the coercive force, and the increase in the samples endurance limit by 20-40 MPa. The authors attributed this effect to healing of the material defects occurred as a result of surface treatment, and refinement of the surface layer structure and improving the level of compressive macrostrains on it which was established with the help of the X-ray method. The obtained results indicate the possibility of using this kind of surface treatment to heal defects in products which were in operation and the need to reduce the level of degradation of the metal in order to prolong their life.

Author Biographies

Karyna Vakulenko, Institute for problems in machinery NAS of Ukraine 2/10 Pozharsky str., Kharkiv, Ukraine, 61046,

PhD, senior researcher

Department of forming in machinery

Iryna Kazak, Institute for problems in machinery NAS of Ukraine 2/10 Pozharsky str., Kharkiv, Ukraine, 61046,

PhD, Senior Researcher

Department of forming in machinery

Volodymyr Matsevityi, Institute for problems in machinery NAS of Ukraine 2/10 Pozharsky str., Kharkiv, Ukraine, 61046,

Doctor of Technical Science, Professor

Head of the material science department

References

  1. Boitsov, V. B., Cherniavskii, A. O. (2005). Tehnologicheskie metody povysheniia prochnosti I dolgovechnosti. Мoscow: Mashinostroenie, 128.
  2. Kostetskii, B. I., Nosovskii, I. G., Bershadskii, L. I., Karaulov, A. K. (1975). Nadezhnost I dolgovechnost mashin. Кyiv: Tehnika, 408.
  3. Ivanova, V. S. (1963). Ustalostnoe razrushenie metallov. Мoscow: Gos. nauch.-tehn. izd-vo lit. po chernoi i tsvetnoi metallurgii, 272.
  4. Panin, V. E., Sergeev, V. P., Panin, A. V., Pochivaev, Yu. I. (2007). Nanostrukturirovanie poverkhnostnykh sloev i nanesenie nanostrukturnykh pokrytii – effetivnyi sposob uprochneniia sovremennykh konstruktsionnykh i instrumental'nykh materialov. Fizika metallov i metallovedenie, 104 (6), 650–660.
  5. Volosevich, P. Yu., Prokopenko, G. I., Knysh, V. V., Voytenko, O. V. (2008). Strukturnye izmeneniia v zone svarnogo shva stali St3 pri ultrazvukovoi udarnoi obrabotke i ikh vliyanie na povyshenie soprotivleniia ustalosti. Metallofizika i noveyshie tekhnologii, 30 (10), 1429–1443.
  6. Dyachenko, S. S., Ponomarenko, I. V., Zolotko, V. A. (2009). Vozmozhnosti polucheniia nanostruktury v massivnykh izdeliyakh i vliianie nanostrukturirovaniia na ikh svoistva. Fizicheskaia inzheneriia poverkhnosti, 7 (4), 385–396.
  7. Volosevich, P. Yu. (2007). Printsip D’Alambera i sovremennye predstavleniia o plasticheskoi deformatsii. Metallofizika i noveyshie tekhnologii, 29 (10), 1393–1406.
  8. Lowe, T. C. (2007). Enhancing Fatigue Properties of Nanostructured Metals and Alloys. Advanced Materials Research, 29-30, 117–122. doi: 10.4028/www.scientific.net/amr.29-30.117
  9. Chan, K. S. (2003). A microstructure-based fatigue-crack-initiation model. Metallurgical and Materials Transactions A, 34 (1), 43–58. doi: 10.1007/s11661-003-0207-9
  10. Hanlon, T. (2003). Grain size effects on the fatigue response of nanocrystalline metals. Scripta Materialia, 49 (7), 675–680. doi: 10.1016/s1359-6462(03)00393-2
  11. Dyachenko, S. S. Ponomarenko, І. V., Bіlozerov, V. V., Makhatіlova, G. І., Gritsenko, V. І. (2008). Otsіnka vnesku rіznikh chinnykіv u pіdvyshchennia konstruktsіynoi mіtsnostі vyrobіv pіslia іonnogo bombarduvannia. Vestnik KhNADU, 42, 71–73.
  12. Ioffe, A. F. (1928). Mekhanicheskie svoistva kristallov. Uspekhi fizicheskikh nauk, VIII (4), 441–482.
  13. Baranov, Yu. V. (2005). Effekt Ioffe na metallakh. Moscow: MGIU, 140.
  14. Andrievskii, R. A., Glezer, A. M. (2009) Poverkhnost' nanostruktur. Uspekhi fizicheskikh nauk, 179 (4), 337–358.
  15. Dub, S. N., Novikov, N. V. (2004). Ispytaniia tverdykh tel na nanotverdost'. Sverkhtverdye materially, 6, 16–33.
  16. Ponomarenko, I. V., Dyachenko, S. S., Doshchechkina, I. V., Kondratenko, I. I. (2006). Vliyanie razlichnykh metodov poverkhnostnogo uprochneniia na ustalostnuiu prochnost'. Vestnik KhNADU, 33, 41–44.
  17. Dyachenko, S. S., Ponomarenko, I. V. (2009). Factory, scho zumovluut pidvyschennia konstruktsiinoi mitsnosti stalevyh vyrobiv pislia ionno-plazmovoi obrobky. Mizhnarodna naukova konferentsia “Ivan Feschenko-Chopivskii Vchenyi I Patriot”, 22–30.
  18. Lobanov, L. M., Kir'yan, V. I., Knysh, V. V., Prokopenko, G. I. (2006). Povyshenie soprotivleniia ustalosti svarnykh soedinenii metallokonstruktsii vysokochastotnoi mekhanicheskoi prokovkoi (Obzor). Avtomaticheskaya svarka, 9, 3–11.
  19. Knysh, V. V., Solovey, S. A., Kuzmenko, A. Z. (2010). Povyshenie tsiklicheskoi dolgovechnosti svarnykh soedinenii s nakoplennymi ustalostnymi povrezhdeniyami vysokochastotnoi prokovkoi. Avtomaticheskaya svarka, 10, 41–44.
  20. ROY, S. (2003). Fatigue resistance of welded details enhanced by ultrasonic impact treatment (UIT). International Journal of Fatigue, 25(9-11), 1239–1247. doi: 10.1016/s0142-1123(03)00151-8
  21. Matsevityy, V. M., Vakulenko, K. V., Kazak, I. B. (2012). O zalechivanii defektov v metallakh pri plasticheskoi deformatsii. Problemy mashinostroeniia, 15 (1), 66–76.
  22. Vakulenko, K. V., Kazak, I. B., Bezlyud'ko, G. Ya., Yareshchenko, V. G., Elkina, E. I. (2015). Izmenenie koertsitivnoi sily pri ustalostnykh ispytaniiakh obraztsov iz stali 40Kh. Problemy mashinostroeniia, 18 (2), 66–71.
  23. Chen, Z. J., Jiles, D. C., & Kameda, J. (1994). Estimation of fatigue exposure from magnetic coercivity. Journal of Applied Physics, 75 (10), 6975. doi: 10.1063/1.356746
  24. Gao, H., Ai, Z., Yu, H., Wu, H., & Liu, X. (2014). Analysis of Internal Crack Healing Mechanism under Rolling Deformation. PLoS ONE, 9 (7), e101907-1–e101907-6. doi: 10.1371/journal.pone.0101907

Downloads

Published

2016-06-15

How to Cite

Vakulenko, K., Kazak, I., & Matsevityi, V. (2016). Effect of the state of surface layer on 40х steel fatigue characteristics. Eastern-European Journal of Enterprise Technologies, 3(5(81), 18–24. https://doi.org/10.15587/1729-4061.2016.69644