The choice of the optimal temperature and time parameters of gas nitriding of steel

Authors

  • Wadee Al-Rekaby Dhafer National technical University «Kharkiv Polytechnic Institute» 21 Bagaliya str., Kharkіv, Ukraine, 61002, Ukraine
  • Viktoriia Kostyk National technical University «Kharkiv Polytechnic Institute» 21 Bagaliya str., Kharkіv, Ukraine, 61002, Ukraine https://orcid.org/0000-0002-6824-3805
  • Kateryna Kostyk National technical University «Kharkiv Polytechnic Institute» 21 Bagaliya str., Kharkіv, Ukraine, 61002, Ukraine https://orcid.org/0000-0003-4139-9970
  • Alexandr Glotka Zaporozhye National Technical University 64 Zukovskogo str., Zaporozhye, Ukraine, 69063, Ukraine https://orcid.org/0000-0002-3117-2687
  • Mykola Chechel Zaporozhye National Technical University, 64 Zukovskogo str., Zaporozhye, Ukraine, 69063, Ukraine

DOI:

https://doi.org/10.15587/1729-4061.2016.69809

Keywords:

thermochemical treatment, gas nitriding, diffusion layer depth, surface hardness

Abstract

Mathematical modeling of the gas nitriding process allows solving the problems of control of process parameters, prediction of outcomes and development of various treatment conditions, which is quite an urgent issue today. The research was aimed at selecting the optimum temperature and time parameters of gas nitriding of 38Сr2MoAl steel. Optical and electron microscopy showed that the diffusion layer after gas nitriding in the ammonia environment is the nitrided case and the region of internal nitriding. The experimental data showed that the diffusion layer depth varies from 40 to 650 µm in the range of gas nitriding temperatures of 500 - 560 °С and time of 20 - 80 hours, while the surface hardness varies within 6.5 - 10 GPa. The mathematical models in the form of quadratic polynomials, describing the dependence of the depth of the nitrided case and the surface hardness on the temperature and time of gas nitriding were obtained. The mathematical description of the changes in the depth of the nitrided case and surface hardness depending on the changes in the treatment temperature and time, which allows determining the specific conditions of the gas nitriding (temperature and time) based on the desired depth of the diffusion layer or the surface hardness of 38Сr2MoAl steel was constructed.

Author Biographies

Wadee Al-Rekaby Dhafer, National technical University «Kharkiv Polytechnic Institute» 21 Bagaliya str., Kharkіv, Ukraine, 61002

Department of Materials Science

Viktoriia Kostyk, National technical University «Kharkiv Polytechnic Institute» 21 Bagaliya str., Kharkіv, Ukraine, 61002

PhD, Associate professor

Department of Materials Science

Kateryna Kostyk, National technical University «Kharkiv Polytechnic Institute» 21 Bagaliya str., Kharkіv, Ukraine, 61002

PhD, Associate professor

Department of Foundry production

Alexandr Glotka, Zaporozhye National Technical University 64 Zukovskogo str., Zaporozhye, Ukraine, 69063

PhD, Associate professor

Department of Physical science

Mykola Chechel, Zaporozhye National Technical University, 64 Zukovskogo str., Zaporozhye, Ukraine, 69063

Postgraduate student

Department of machines and technologies of Foundry

References

  1. Gerasimov S. A. (2004) Novyie idei o mehanizme obrazovaniya strukturyi azotirovannyih staley. Metallovedenie i termicheskaya obrabotka metallov, 1, 13–18.
  2. Krukovich M. G. (2004) Modelirovanie protsessa azotirovaniya. Metallovedenie i termicheskaya obrabotka metallov, 1, 24–31.
  3. Gu, W., Shen, D., Wang, Y., Chen, G., Feng, W., Zhang, G. et. al. (2006). Deposition of duplex Al2O3/aluminum coatings on steel using a combined technique of arc spraying and plasma electrolytic oxidation. Applied Surface Science, 252 (8), 2927–2932. doi: 10.1016/j.apsusc.2005.04.036
  4. Ai, J.-H., Ha, H. M., Gangloff, R. P., Scully, J. R. (2013). Hydrogen diffusion and trapping in a precipitation-hardened nickel–copper–aluminum alloy Monel K-500 (UNS N05500). Acta Materialia, 61 (9), 3186–3199. doi: 10.1016/j.actamat.2013.02.007
  5. Penumadu, D. (2009). Material Science and Engineering with Neutron Imaging. Neutron Scattering Applications and Techniques, 209–227. doi: 10.1007/978-0-387-78693-3_12
  6. Patwari, M. A. U., Mahmood, M. N., Noor, S., Shovon, M. Z. H. (2013). Investigation of Machinability Responses During Magnetic Field Assisted Turning Process of Preheated Mild Steel. Procedia Engineering, 56, 713–718. doi: 10.1016/j.proeng.2013.03.183
  7. Saha, R., Ueji, R., Tsuji, N. (2013). Fully recrystallized nanostructure fabricated without severe plastic deformation in high-Mn austenitic steel. Scripta Materialia, 68 (10), 813–816. doi: 10.1016/j.scriptamat.2013.01.038
  8. Thanh, D. T. M., Nam, P. T., Phuong, N. T., Que, L. X., Anh, N. V., Hoang, T., Lam, T. D. (2013). Controlling the electrodeposition, morphology and structure of hydroxyapatite coating on 316L stainless steel. Materials Science and Engineering: C, 33 (4), 2037–2045. doi: 10.1016/j.msec.2013.01.018
  9. Mohanad, M. K., Kostyk, V., Domin, D., Kostyk, K. (2016). Modeling of the case depth and surface hardness of steel during ion nitriding. Eastern-European Journal of Enterprise Technologies, 2 (5(80)), 45–49. doi: 10.15587/1729-4061.2016.65454
  10. Kostyk, K. O. (2015). Research of influence of gas nitriding duration on formation of diffusion layer of steel 20Kh2N4A. Odes’kyi Politechnichnyi Universytet. Pratsi, 2, 14–18. doi: 10.15276/opu.2.46.2015.04

Downloads

Published

2016-06-15

How to Cite

Dhafer, W. A.-R., Kostyk, V., Kostyk, K., Glotka, A., & Chechel, M. (2016). The choice of the optimal temperature and time parameters of gas nitriding of steel. Eastern-European Journal of Enterprise Technologies, 3(5(81), 44–50. https://doi.org/10.15587/1729-4061.2016.69809