Design of electrically conducting polymer hybrid composites based on polyvinyl chloride and polyethylene

Authors

DOI:

https://doi.org/10.15587/1729-4061.2016.71233

Keywords:

polyethylene, polyvinyl chloride, graphitized carbon black, carbon fibers, nickel powder, copper fibers

Abstract

Interest to electrically conducting polymer composite materials in recent times has grown considerably, which is associated with the design of new branches of science and technology. The existing analogues are different in the complexity of production and high cost. One of the ways of solving the problem may be designing polymer composite materials with a combined filler. The research was carried out on creating electrically conducting hybrid polymer composites, based on emulsion polyvinyl chloride and polyethylene, using fillers of varying nature and dimensions. We studied the dependence of electrical conductivity of mono­ and binary­filled polymer composites on the type and content of fillers. It was found that the binary filling allows designing electrically conducting polymer composites, which are more promising economically compared to mono­filled ones. We defined physical and mechanical characteristics: tensile strength and relative elongation at break of obtained polymer composites. A method to improve them was proposed by introduction of a compatibilizer – graft­polymer of polyethylene with maleic anhydride.

Depending on the value of the electrical conductivity, polymer hybrid composites can be used for: at a value of of elecrical conductivity 10–4–10–7Cm/cm as anti­static materials; at 101–10–4 Cm/cm – as scattering anti­static materials, at 101– 104 Cm/cm as current­conducting materials.

Author Biographies

Yaroslav Kuryptya, Kyiv National University of Technology and Design Nemirovich-Danchenko str., 2, Kyiv, Ukraine, 01011

Postgraduate student

Department of Applied Ecology, technology of polymers and chemical fibers

Nadiya Sova, Kyiv National University of Technology and Design Nemirovich-Danchenko str., 2, Kyiv, Ukraine, 01011

PhD, Associate professor

Department of Applied Ecology, technology of polymers and chemical fibers

Bohdan Savchenko, Kyiv National University of Technology and Design Nemirovich-Danchenko str., 2, Kyiv, Ukraine, 01011

Doctor of technical sciences, Professor

Department of Applied Ecology, technology of polymers and chemical fibers

Aleksander Slieptsov, Kyiv National University of Technology and Design Nemirovich-Danchenko str., 2, Kyiv, Ukraine, 01011

Postgraduate student

Department of Applied Ecology, technology of polymers and chemical fibers

Viktoriia Plavan, Kyiv National University of Technology and Design Nemirovich-Danchenko str., 2, Kyiv, Ukraine, 01011

Doctor of technical sciences, Professor, head of the department

Department of Applied Ecology, technology of polymers and chemical fibers

References

  1. Zou, J., Yip, H.-L., Hau, S. K., Jen, A. K.-Y. (2010). Metal grid/conducting polymer hybrid transparent electrode for inverted polymer solar cells. Applied Physics Letters, 96 (20), 203301. doi: 10.1063/1.3394679
  2. Bai, H., Shi, G. (2007). Gas Sensors Based on Conducting Polymers. Sensors, 7( 3), 267–307. doi: 10.3390/s7030267
  3. Huang, Y. F., Chuang, L. C., Kannan, A. M., Lin, C. W. (2009). Proton-conducting membranes with high selectivity from cross-linked poly(vinyl alcohol) and poly(vinyl pyrrolidone) for direct methanol fuel cell applications. Journal of Power Sources, 186 (1), 22–28. doi: 10.1016/j.jpowsour.2008.09.072
  4. Joseph, S., McClure, J. C., Sebastian, P. J., Moreira, J., Valenzuela, E. (2008). Polyaniline and polypyrrole coatings on aluminum for PEM fuel cell bipolar plates. Journal of Power Sources, 177 (1), 161–166. doi: 10.1016/j.jpowsour.2007.09.113
  5. Baker, C. O., Shedd, B., Innis, P. C., Whitten, P. G., Spinks, G. M., Wallace, G. G., Kaner, R. B. (2008). Monolithic Actuators from Flash-Welded Polyaniline Nanofibers. Advanced Materials, 20 (1), 155–158. doi: 10.1002/adma.200602864
  6. Kumar, S., Lively, B., Sun, L. L., Li, B., Zhong, W. H. (2010). Highly dispersed and electrically conductive polycarbonate/oxidized carbon nanofiber composites for electrostatic dissipation applications. Carbon, 48 (13), 3846–3857. doi: 10.1016/j.carbon.2010.06.050
  7. Li, N., Huang, Y., Du, F., He, X., Lin, X., Gao, H. et. al. (2006). Electromagnetic Interference (EMI) Shielding of Single-Walled Carbon Nanotube Epoxy Composites. Nano Lett., 6 (6), 1141–1145. doi: 10.1021/nl0602589
  8. Yamaguchi, I., Nagano, T., Tuan, L. V. (2015). NaH-assisted n-doping of polyanilines with dopant cation trapping sites and their stability of n-doping state against air. Polymer, 73, 79–85. doi: 10.1016/j.polymer.2015.07.037
  9. Battisti, A., Skordos, A. A., Partridge, I. K. (2010). Percolation threshold of carbon nanotubes filled unsaturated polyesters. Composites Science and Technology, 70 (4), 633–637. doi: 10.1016/j.compscitech.2009.12.017
  10. Dai, K., Xu, X.-B., Li, Z.-M. (2007). Electrically conductive carbon black (CB) filled in situ microfibrillar poly(ethylene terephthalate) (PET)/polyethylene (PE) composite with a selective CB distribution. Polymer, 48 (3), 849–859. doi: 10.1016/j.polymer.2006.12.026
  11. Zhang, W., Dehghani-Sanij, A. A., Blackburn, R. S. (2007). Carbon based conductive polymer composites. Journal of Materials Science, 42 (10), 3408–3418. doi: 10.1007/s10853-007-1688-5
  12. Lan, X., Leng, J. S., Liu, Y. J., Du, S. Y. (2008). Investigate of Electrical Conductivity of Shape-Memory Polymer Filled with Carbon Black. Advanced Materials Research, 47-50, 714–717. doi: 10.4028/www.scientific.net/amr.47-50.714
  13. Stankovich, S., Dikin, D. A., Dommett, G. H. B., Kohlhaas, K. M., Zimney, E. J., Stach, E. A., Ruoff, R. S. (2006). Graphene-based composite materials. Nature, 442 (7100), 282–286. doi: 10.1038/nature04969
  14. Al-Saleh, M. H., Sundararaj, U. (2009). A review of vapor grown carbon nanofiber/polymer conductive composites. Carbon, 47 (1), 2–22. doi: 10.1016/j.carbon.2008.09.039
  15. Gao, L., Chou, T.-W., Thostenson, E. T., Godara, A., Zhang, Z., Mezzo, L. (2010). Highly conductive polymer composites based on controlled agglomeration of carbon nanotubes. Carbon, 48 (9), 2649–2651. doi: 10.1016/j.carbon.2010.03.027
  16. Ma, P.-C., Liu, M.-Y., Zhang, H., Wang, S.-Q., Wang, R., Wang, K. et. al. (2009). Enhanced Electrical Conductivity of Nanocomposites Containing Hybrid Fillers of Carbon Nanotubes and Carbon Black. ACS Applied Materials & Interfaces, 1 (5), 1090–1096. doi: 10.1021/am9000503
  17. Paglicawan, M. A., Kim, J. K., Bang, D.-S. (2009). Dispersion of multiwalled carbon nanotubes in thermoplastic elastomer gels: Morphological, rheological, and electrical properties. Polymer Composites, 31 (2), 210–217. doi: 10.1002/pc.20786
  18. Rybak, A., Boiteux, G., Melis, F., Seytre, G. (2010). Conductive polymer composites based on metallic nanofiller as smart materials for current limiting devices. Composites Science and Technology, 70 (2), 410–416. doi: 10.1016/j.compscitech.2009.11.019
  19. Boudenne, A., Ibos, L., Fois, M., Majesté, J. C., Géhin, E. (2005). Electrical and thermal behavior of polypropylene filled with copper particles. Composites Part A: Applied Science and Manufacturing, 36 (11), 1545–1554. doi: 10.1016/j.compositesa.2005.02.005
  20. Boiteux, G., Mamunya, Y. P., Lebedev, E. V., Adamczewski, A., Boullanger, C., Cassagnau, P., Seytre, G. (2007). From conductive polymer composites with controlled morphology to smart materials. Synthetic Metals, 157 (24), 1071–1073. doi: 10.1016/j.synthmet.2007.11.003
  21. Liang, G. D., Bao, S. P., Tjong, S. C. (2007). Microstructure and properties of polypropylene composites filled with silver and carbon nanotube nanoparticles prepared by melt-compounding. Materials Science and Engineering: B, 142 (2-3), 55–61. doi: 10.1016/j.mseb.2007.06.028
  22. Dang, Z.-M., Li, W.-K., Xu, H.-P. (2009). Origin of remarkable positive temperature coefficient effect in the modified carbon black and carbon fiber cofillled polymer composites. Journal of Applied Physics, 106 (2), 3747–3754. doi: 10.1063/1.3182818
  23. Wang, Z., Meng, X., Li, J., Du, X., Li, S., Jiang, Z., Tang, T. (2009). A Simple Method for Preparing Carbon Nanotubes/Clay Hybrids in Water. The Journal of Physical Chemistry C, 113 (19), 8058–8064. doi: 10.1021/jp811260p
  24. Konishi, Y., Cakmak, M. (2006). Nanoparticle induced network self-assembly in polymer–carbon black composites. Polymer, 47 (15), 5371–5391. doi: 10.1016/j.polymer.2006.05.015
  25. HOST 6433.2–71 (1972). Metodyi opredeleniya elektricheskogo soprotivleniya pri postoyannom napryazhenii. Vved. 01.07.72. Moscow: Izd-vo standartov, 23.
  26. Stauffer, D., Aharony, A. (1994). Introduction to percolation theory. CRC press, 192.
  27. HOST 11262–80 (1980). Plastmassy. Metod ispytaniya na rastyazhenie. Vved. 01.12.80. Moscow: Izd-vo standartov, 14.
  28. Mamunya, Y. P., Davydenko, V. V., Pissis, P., Lebedev, E. V. (2002). Electrical and thermal conductivity of polymers filled with metal powders. European Polymer Journal, 38 (9), 1887–1897. doi: 10.1016/s0014-3057(02)00064-2
  29. Slieptsov, A., Savchenko B., Sova N., Kuryptya Y. (2015). Funktsionalizovaniy polietilen. Zastosuvannya dlya modifikatsiyi napovnenih polimernih kompozitsiy. Himichna promislovist Ukrayini, 3, 47–49.

Downloads

Published

2016-06-26

How to Cite

Kuryptya, Y., Sova, N., Savchenko, B., Slieptsov, A., & Plavan, V. (2016). Design of electrically conducting polymer hybrid composites based on polyvinyl chloride and polyethylene. Eastern-European Journal of Enterprise Technologies, 3(6(81), 26–32. https://doi.org/10.15587/1729-4061.2016.71233

Issue

Section

Technology organic and inorganic substances