Designing low viscosity furan-epoxy polymers of the materials for construction industry

Authors

DOI:

https://doi.org/10.15587/1729-4061.2016.71266

Keywords:

furan­epoxy reactive oligomer, amine­containing curing agent, strength, sorption properties, adhesive strength, low­viscosity injection system, construction industry

Abstract

The materials are designed and the properties are studied of the low­viscosity furan­epoxy reactive oligomers, structured by amine complex curing agents for the use as injection systems during the repairing and recovery construction work. A wide range of the amine­containing structuring agents that have industrial potential and ensure a high degree of conversion was analyzed.

This makes it possible to form the rational structure of furan­epoxy polymers, which is due to the application of optimal parameters of structuring (temperature, concentration of ingredients, time and others) during the formation of the polymeric composition systems for construction purposes. The structural­topological parameters were studied (traditional topological criterion of Wiener and others) and certain parameters of reactivity (structural functionality, formal unlimitedness, the index of distribution of electron density on the atoms of molecule, etc.) parent substances (monomers) during obtaining furan­epoxy materials. The knowledge of this set of characteristics makes it possible to purposefully regulate structure and properties of the designed low­viscosity injection furan­epoxy polymeric materials.

The deformation­strength, adhesive, sorption, technological properties of the proposed low­viscosity injection furan epoxy polymers for construction purposes were explored. As a result of the optimal combination of the set of structural­topological parameters and technological factors, the high level of physical­mechanical, adhesive properties, water resistance of the designed composite materials is ensured.

The development of composite polymeric systems was accomplished with the use of the “green chemistry” principles.

Author Biographies

Alex Rassokha, National Technical University "Kharkiv Polytechnic Institute" Bagalia str., 21, Kharkiv, Ukraine, 61002

PhD, Associate Professor

Department of Technology of Plastics and biological active polymer

Anna Cherkashina, National Technical University "Kharkiv Polytechnic Institute" Bagalia str., 21, Kharkiv, Ukraine, 61002

PhD, Associate Professor

Department of Technology of Plastics and biological active polymer

References

  1. Kireeva, Yu. I. (2006). Stroitelnyie i otdelochnyie materialyi na sovremennom ryinke. Moscow: Eksmo, 304.
  2. Matthews, F., Rawlings, R. (2004). World of materials and technologies / Composites. Mechanics and technology. Moscow: Technosphere, 408.
  3. Anastas, P. T., Warner, J. C. (1998). Green Chemistry: Theory and Practice. New York. Oxford University Press, 140.
  4. Fache, M., Montérémal, C., Boutevin, B., Caillol, S. (2015). Amine hardeners and epoxy cross-linker from aromatic renewable resources. European Polymer Journal, 73, 344–362. doi: 10.1016/j.eurpolymj.2015.10.032
  5. Fernández-Francos, X., Ramis, X. (2015). Structural analysis of the curing of epoxy thermosets crosslinked with hyperbranched poly(ethyleneimine)s. European Polymer Journal, 70, 286–305. doi: 10.1016/j.eurpolymj.2015.07.031
  6. Monti, M., Hoydonckx, H., Stappers, F., Camino, G. (2015). Thermal and combustion behavior of furan resin/silica nanocomposites. European Polymer Journal, 67, 561–569. doi: 10.1016/j.eurpolymj.2015.02.005
  7. Pratama, P. A. (2011). Investigation of Solution–Based Healing of Furan–Functionalized Epoxy–Amine Thermoset. Copyright, 1–108.
  8. Hu, F., Yadav, S. K., La Scala, J. J., Sadler, J. M., Palmese, G. R. (2015). Preparation and Characterization of Fully Furan-Based Renewable Thermosetting Epoxy-Amine Systems. Macromolecular Chemistry and Physics, 216 (13), 1441–1446. doi: 10.1002/macp.201500142
  9. Karahanov, R. A., Kelarev, V. I., Polivin Yu. N. (1993). Sintez i svoystva nepredelnyih soedineniy furanovogo ryada. Uspehi himii, 62 (3), 184–207.
  10. Pratama, P. A., Peterson, A. M., Palmese, G. R. (2013). The role of maleimide structure in the healing of furan-functionalized epoxy–amine thermosets. Polymer Chemistry, 4 (18), 5000–5006. doi: 10.1039/c3py00084b
  11. Babaevskiy, P. G. (1980). Praktikum po polimernomu materialovedeniyu. Moscow: Himiya, 256.
  12. Kryizhanovskiy, V. K., Burlov, V. V., Panimatchenko, A. D., Kryizhanovskaya, Yu. V. (2003). Tehnicheskie svoystva polimernyih materialov. SPb.: Professiya, 240.
  13. Morozik, Yu. I., Fomenko, P. V., Shantroha, A. V. (2008). Obschaya formula dlya rascheta formalnoy nepredelnosti himicheskih soedineniy. Zhurnal strukturnoy himii, 49 (5), 974–976.
  14. Bonchev, D. G. (1984). Harakterizatsiya himicheskih struktur s pomoschyu teoriiinformatsii i teorii grafov. Moscow: Moskovskiy universitet, 48.
  15. Hansen, P. J., Jurs, P. C. (1988). Chemical applications of graph theory. Part II. Isomer enumeration. Journal of Chemical Education, 65 (8), 661. doi: 10.1021/ed065p661
  16. Gutman, I., Estrada, E. (1996). Topological Indices Based on the Line Graph of the Molecular Graph. Journal of Chemical Information and Computer Sciences, 36 (3), 541–543. doi: 10.1021/ci950143i
  17. Chalyih, A. E. (1987). Diffuziya v polimernyih sistemah. Moscow: Himiya, 312.
  18. Kuznetsova, Z. N., Solomatov, V. I., Emelyanov, V. Yu. (1983). Uskorennyiy metod opredeleniya koeffitsienta diffuzii zhidkosti v polimernyie materialyi. Plasticheskie massyi, 6, 42–43.
  19. Kandyirin, L. B., Usoltsev, B. E., Kozhevnikov, V. S. (2000). Issledovanie mehanicheskih svoystv napolnennyih kompozitsiy i polimerbetonov na osnove smesey furanovyih i epoksidnyih smol. Plasticheskie massyi, 7, 34–37.
  20. Anisimov, Yu. N., Savin, S. N. (2001). Formirovanie, prostranstvennaya struktura i prochnostnyie svoystva vzaimopronikayuschih polimernyih setok na osnove oligomer–oligomernyih sistem nizkotemperaturnogo otverzhdeniya. Zhurnal prikladnoy himii, 74 (4), 633–636.
  21. Aniskevich, K., Hristova, Yu., Yansons, Yu. (2003) Sorbtsionnyie harakteristiki polimerbetona pri dlitelnoy vyiderzhke v vode. Mehanika kompozitnyih materialov, 39 (4), 463–476.
  22. Simonov-Emelyanov, I. D., Sokolov, V. I., Shalgunov, S. I., Miheeva, L. G. (2005). Vliyanie ishodnyih komponentov i granitsyi razdela faz napolnitel–polimer na sorbtsiyu i stabilnost elektrofizicheskih i prochnostnyih harakteristik stekloplastika. Plasticheskie massyi, 2, 15–20.

Downloads

Published

2016-06-26

How to Cite

Rassokha, A., & Cherkashina, A. (2016). Designing low viscosity furan-epoxy polymers of the materials for construction industry. Eastern-European Journal of Enterprise Technologies, 3(6(81), 38–44. https://doi.org/10.15587/1729-4061.2016.71266

Issue

Section

Technology organic and inorganic substances