A study of significant factors affecting the quality of water in the Oskil river (Ukraine)

Authors

DOI:

https://doi.org/10.15587/1729-4061.2016.72415

Keywords:

quality, degradation processes, climate change, hydrological parameters, correlation

Abstract

The study has explored climate shifts in the Kharkiv region and changes in the hydrological indices of the Oskil river in Ukraine. Predictive models were constructed by the Holt­Winters method. The findings show an expected gradual increase in temperature by 1.9 °C – from 7.8 °C to 9.7 °C – in 2020, which can lead to a decrease in precipitation, the runoff volume, and water consumption. It also has a significant adverse impact on the formation of surface water quality and on the development of infestations. Natural and anthropogenic factors that have the most significant effects on the hydrochemical characteristics of the Oskil river were specified by a multivariate correlation and regression analysis.

The research findings show that the quality of aquatic sites is most affected by wastewater discharges and an increase in air temperature, which testifies to the need of reducing loads from industrial facilities and utilities. The study takes into account landscape and environmental characteristics of the river basin. We have assessed rationality of using the basin catchment area on the basis of exponents such as tillage, urbanization, the volume of water consumption, forest cover, meadow cover, lake cover, and changes in the hydrological characteristics that influence the development of the intensity of degradation processes. The assessment of the processes of ravine formation, land erodibility, silting and waterlogging of small rivers in the Oskil river basin has shown a significant increase in the intensity of the degradation processes compared to 1990, which requires applying environmental protection measures to improve the situation. The ranking of the small rivers in the Oskil river basin by the index of process development helps prioritize the funding of environmental protection measures.

Author Biographies

Alexander Vasenko, Ukrainian Scientific Research Institute of Ecological Problems Bakulina str., 6, Kharkiv, Ukraine, 61166

Candidate of biological science, Associate professor,

Laboratory of research of ecological sustainability of the objects of the environment and natural areas of special protection

Olga Rybalova, National University of Civil Defense of Ukraine Chernishevskaya str., 94, Kharkiv, Ukraine, 61023

PhD, Associate Professor

Department of Labour Protection and technogenic and ecological safety

Oksana Kozlovskaya, Ukrainian Scientific Research Institute of Ecological Problems Bakulina str., 6, Kharkiv, Ukraine, 61166

Postgraduate student

Laboratory of research of ecological sustainability of the objects of the environment and natural areas of special protection

References

  1. Vasenko, O. H., Rybalova, O. V., Artemʹiev, S. R. et. al. (2015). Intehralni ta kompleksni otsinky stanu navkolyshnoho pryrodnoho seredovyshcha. Kh: NUHZU, 419.
  2. Romanenko, V. D., Zhukynskyi, V. M., Oksiiuk, O. P. et. al. (1998). Metodyka ekolohichnoi otsinky yakosti poverkhnevykh vod za vidpovidnymy katehoriiamy. Kyiv: Symvol–T, 28.
  3. Snizhko, S. I. (2004). Teoriia i metody analizu rehionalnykh hidrokhimichnykh system. Kyiv: Nika-Tsentr, 394.
  4. Hejzlar, J., Dubrovský, M., Buchtele, J., Růžička, M. (2003). The apparent and potential effects of climate change on the inferred concentration of dissolved organic matter in a temperate stream (the Malše River, South Bohemia). Science of The Total Environment, 310 (1-3), 143–152. doi: 10.1016/s0048-9697(02)00634-4
  5. Webb, B. W., Clack, P. D., Walling, D. E. (2003). Water-air temperature relationships in a Devon river system and the role of flow. Hydrological Processes, 17 (15), 3069–3084. doi: 10.1002/hyp.1280
  6. Beaugrand, G., Reid, P. C. (2003). Long-term changes in phytoplankton, zooplankton and salmon related to climate. Global Change Biology, 9 (6), 801–817. doi: 10.1046/j.1365-2486.2003.00632.x
  7. Hiscock, K., Southward, A., Tittley, I., Hawkins, S. (2004). Effects of changing temperature on benthic marine life in Britain and Ireland. Aquatic Conservation: Marine and Freshwater Ecosystems, 14 (4), 333–362. doi: 10.1002/aqc.628
  8. Ribalova, O. V., Korobkova G. V. (2016). Viznachennya vplivu prirodnih umov na ekologIchniy stan rIchki OskIl. Materials of the XII International scientific and practical conference, “Science and civilization”, 16, 37–40.
  9. NRDC. (2013). Climate Change and Water Resource Management. Available at: https://www.nrdc.org/resources/climate-change-and-water-resource-management
  10. Urama, K., Ozor, N. (2016). Impacts of climate change on water resources in Africa: the Role of Adaptation. Available at: http://www.ourplanet.com/climate-adaptation/Urama_Ozorv.pdf
  11. Jun, X., Shubo, C., Xiuping, H., Rui, X. and Xiaojie, L. (2010). Potential Impacts and Challenges of Climate Change on Water Quality and Ecosystem: Case Studies in Representative Rivers in China. Journal of resources and ecology. Available at: http://agris.fao.org/agris-search/search.do?recordID=US201600004143
  12. Masters, G., Norgrove, L. (2009). Climate change and Invasive alien species. CABI Position Paper. Available at: http://www.cabi.org/Uploads/CABI/expertise/invasive-alien-species-working-paper.pdf
  13. Sala, O. E. (2000). Global Biodiversity Scenarios for the Year 2100  Science, 287 (5459), 1770–1774. doi: 10.1126/science.287.5459.1770
  14. Stachowicz, J. J., Terwin, J. R., Whitlatch, R. B., Osman, R. W. (2002). Nonlinear partial differential equations and applications: Linking climate change and biological invasions: Ocean warming facilitates nonindigenous species invasions. Proceedings of the National Academy of Sciences, 99 (24), 15497–15500. doi: 10.1073/pnas.242437499
  15. Lockwood, L., Hoopes, F., Marchetti, P. (2006). Invasion Ecology. Wiley-Blackwell, 312. Available at: http://eu.wiley.com/WileyCDA/WileyTitle/productCd-1405114185.html
  16. Vasenko, A. G., Vernichenko-Tsvetkov, D. Yu., Lungu, M. L., Persianov, G. V. (2013). O poyavlenii pistii telorezovidnoy v vodnyih ob'ektah harkovskoy oblasti. IX MIzhnarodna naukovo-praktichna konferentsIya “EkologIchna bezpeka: problemi i shlyahi virishennya’, 1, 304.
  17. LItnarovich, R. M. (2011). Pobudova I doslIdzhennya matematichnoYi modelI za dzherelami eksperimentalnih danih metodami regresIynogo analIzu. RIvne: MEGU, 140.
  18. Proskurnin, O. A. (2006). Analiz effektivnosti otsenki regressionnoy zavisimosti sostoyaniya okruzhayuschey sredyi ot tehnogennogo vozdeystviya. Nauk. vIsn. budIvnitstva, 35, 285–290.
  19. Ribalova, O. V., AnIsImova, S. V., PoddashkIn, O. V. (2003). OtsInka spryamovanostI protsesIv stanu ekosistem malih rIchok. VIsn. Mezhdunar. Slavyanskogo un-ta, VI (1), 12–16.
  20. Vasenko, O. G. (2009). EkologIchnI problemi yak naslIdok prirodno-evolyutsIynih ta antropogennih chinnikIv. EkologIchna bezpeka: problemi I shlyahi virIshennya, 1, 225–227.

Downloads

Published

2016-06-30

How to Cite

Vasenko, A., Rybalova, O., & Kozlovskaya, O. (2016). A study of significant factors affecting the quality of water in the Oskil river (Ukraine). Eastern-European Journal of Enterprise Technologies, 3(10(81), 48–55. https://doi.org/10.15587/1729-4061.2016.72415