Development of new casting magnesium-based alloys with increased mechanical properties

Authors

  • Vadim Shalomeev Zaporozhye National Technical University Zhukovsky str., 64, Zaporozhye, Ukraine, 69063, Ukraine https://orcid.org/0000-0002-6091-837X
  • Eduard Tsivirco Zaporozhye National Technical University Zhukovsky str., 64, Zaporozhye, Ukraine, 69063, Ukraine
  • Yuri Vnukov Zaporozhye National Technical University Zhukovsky str., 64, Zaporozhye, Ukraine, 69063, Ukraine https://orcid.org/0000-0002-5618-0018
  • Yekaterina Osadchaya Zaporozhye National Technical University Zhukovsky str., 64, Zaporozhye, Ukraine, 69063, Ukraine
  • Spartak Makovskyi Motor Sich JSC Motorostroiteley ave., 15, Zaporozhye, Ukraine, 69068, Ukraine

DOI:

https://doi.org/10.15587/1729-4061.2016.73384

Keywords:

magnesium alloy, alloying elements, structure, intermetallic compounds, mechanical properties, high-temperature strength

Abstract

Influence of a number of alloying elements (Nd, Ge, Si, Y, Sc, Zr, Ti and Hf) on structure formation, room-temperature mechanical properties and high-temperature strength of МL5 magnesium alloy have been studied.

Influence of the alloying elements on a shape and size of intermetallic compounds has been established. A quantitative and qualitative analysis of the intermetallic phase in additionally alloyed МL5 have been made, its influence on the structure, room-temperature mechanical properties and high-temperature strength of magnesium castings has been investigated.

Influence of morphological and topological features of the structure constituents of the magnesium alloys on their properties has been established. It was shown that micro alloying of the magnesium alloys within a range of 0.05–0.1 % wt. results in an increase of the intermetallic compound volume percent by ~ 1.5 times, reducing their size with simultaneous formation of spherical intermetallic compounds located in the grain centre and serving as additional solidification nuclei. It was found out that at the volume fraction of the intermetallic compounds within a range of 0.35…0.45 % a maximum ductility of the magnesium alloy is attained. Further increase of the intermetallic compound amount leads to decrease in the ductility due to their excessive precipitation and greater strengthening of the metal.

Introduction of the studied magnesium alloys ensures a higher level of room-temperature mechanical properties and a high-temperature strength of the castings that makes them a good candidate material to be used in newly developed machines and assemblies.

Author Biographies

Vadim Shalomeev, Zaporozhye National Technical University Zhukovsky str., 64, Zaporozhye, Ukraine, 69063

Doctor of Technical Sciences, Professor

Department of Physical Material Science

 

Eduard Tsivirco, Zaporozhye National Technical University Zhukovsky str., 64, Zaporozhye, Ukraine, 69063

Doctor of Technical Sciences, Professor

Department of Foundry Equipment and Technologies

Yuri Vnukov, Zaporozhye National Technical University Zhukovsky str., 64, Zaporozhye, Ukraine, 69063

Doctor of Technical Sciences, Professor

Department of Mechanical Engineering Technology

Yekaterina Osadchaya, Zaporozhye National Technical University Zhukovsky str., 64, Zaporozhye, Ukraine, 69063

Department of Physical Material Science

Spartak Makovskyi, Motor Sich JSC Motorostroiteley ave., 15, Zaporozhye, Ukraine, 69068

Engineer 

References

  1. Ovchynnykov, A. V. (2012). Prymenenye tytanovykh splavov s SMK strukturoi dlia vosstanovlenyia detalei rotornoi chasty HTD. Avtomatycheskaia svarka, 2 (706), 21–25.
  2. Bohuslaev, V. A., Kachan, A. Ya., Kalynyna, N. E. (2009). Avyatsyonno-kosmycheskye materyali y tekhnolohyy. Izd-vo OAO "Motor Sych", 351.
  3. Rourke, D. J. (2000). Magnesium–current status and future prospects. Magnesium New Business Opportunies, 14–23.
  4. Son, K. E., Kanh, M. Ch., Kym, K. Kh. (2006). Yssledovanyia y razrabotky prymenenyia mahnyevikh splavov v Yuzhnoi Koree. Lyteinoe proyzvodstvo, 1, 8–10.
  5. Dyrynha, X., Maier, P., Fekhner, D., Bolen, P. (2006). Nastoiashchee y budushchee mahnyevikh splavov v nashei tsyvylyzatsyy. Lyteinoe proyzvodstvo, 1, 4–7.
  6. Kornylov, Y. Y. (1961). Fyzyko-khymycheskye osnovy zharoprochnosty splavov. Moscow: AN SSSR, 214.
  7. Osypov, K. A. (1960). Voprosy teoryy zharoprochnosty metallov y splavov. Moscow: AN SSSR, 323.
  8. Yum-Rozery (1959). Struktura metallov y splavov. Moscow: Metallurhyzdat, 391.
  9. Darken, L. S. (1960). Fyzycheskaia khymyia metallov. Moscow: Metallurhyzdat, 245.
  10. Hshneidner, K. A. (1965). Splavy redkozemelnyh metallov. Moscow: Mir, 185.
  11. Uobber, Dzh. (1962). Metallurhyia i metallovedenye plutonyia i eho splavov. Moscow: Hosatomyzdat, 102.
  12. Horonovskyi, Y. T. (1987). Kratkyi spravochnyk po khymyy. Kyiv: Naukova dumka, 829.
  13. Hryhorovych, V. K. (1969). Zharoprochnost i dyahrammy sostoianyia. Moscow: Metallurhyia, 323.
  14. Wang, T., Zhu, T., Sun, J., Wu, R., Zhang, M. (2015). Influence of rolling directions on microstructure, mechanical properties and anisotropy of Mg-5Li-1Al-0.5Y alloy. Journal of Magnesium and Alloys, 3 (4), 345–351. doi: 10.1016/j.jma.2015.11.001
  15. Jia, H., Feng, X., Yang, Y. (2015). Influence of solution treatment on microstructure, mechanical and corrosion properties of Mg-4Zn alloy. Journal of Magnesium and Alloys, 3 (3), 247–252. doi: 10.1016/j.jma.2015.08.006
  16. Li, C. Q., Xu, D. K., Zu, T. T., Han, E. H., Wang, L. (2015). Effect of temperature on the mechanical abnormity of the quasicrystal reinforced Mg–4%Li–6%Zn–1.2%Y alloy. Journal of Magnesium and Alloys, 3 (2), 106–111. doi: 10.1016/j.jma.2015.02.003
  17. Chen, J., Sun, Y., Zhang, J., Cheng, W., Niu, X., Xu, C. (2015). Effects of Ti addition on the microstructure and mechanical properties of Mg–Zn–Zr–Ca alloys. Journal of Magnesium and Alloys, 3 (2), 121–126. doi: 10.1016/j.jma.2015.05.001
  18. Chen, H. L., Lin, L., Mao, P. L., Liu, Z. (2015). Phase stability, electronic, elastic and thermodynamic properties of Al-RE intermetallics in Mg-Al-RE alloy: A first principles study. Journal of Magnesium and Alloys, 3 (3), 197–202. doi: 10.1016/j.jma.2015.08.003
  19. Kai, W. (2015). Effect of microstructure evolution on mechanical property of extruded Mg–12Gd–2Er–1Zn–0.6Zr alloys. Journal of Magnesium and Alloys, 1, 23–28.
  20. Shalomeev, V. A., Tsyvirko, E. I., Lukinov, V. V., Lysenko, N. O. (2009). Pat. 39357 Ukrayna: MPK S22S 23/00. Lyvarnyi splav na osnovi mahniiu z pidvyshchenoiu ridynotekuchistiu. Zaiavytel y patentoobladatel Zaporozhskyi natsyonalnii tekhnycheskyi unyversytet; declared: 28.08.08; published: 25.02.09, Biul. 4.
  21. Shalomeev, V. A., Tsyvirko, E. I., Lukinov, V. V., Lysenko, N. O., Parkhomenko, A. V. (2009). Pat. 39358 Ukrayna: MPK S22S 23/00. Lyvarnyi splav na ocnov mahniiu. Zaiavytel y patentoobladatel Zaporozhskyi natsyonalnii tekhnycheskyi unyversytet; declared: 28.08.08; published: 25.02.09, Biul. 4.

Downloads

Published

2016-08-31

How to Cite

Shalomeev, V., Tsivirco, E., Vnukov, Y., Osadchaya, Y., & Makovskyi, S. (2016). Development of new casting magnesium-based alloys with increased mechanical properties. Eastern-European Journal of Enterprise Technologies, 4(1(82), 4–10. https://doi.org/10.15587/1729-4061.2016.73384

Issue

Section

Industrial and Technology Systems