Calculation of electrothermal processes in pulse converters to provide thermal protection

Authors

DOI:

https://doi.org/10.15587/1729-4061.2016.73541

Keywords:

equation of the system state, thermal impedance, matrix exponential, electrothermal modeling

Abstract

Power electronics and their thermal protection systems that are designed on the basis of modern methods of thermal calculations work efficiently under specified operating conditions in a particular operating range of temperatures and modes beyond which the form of the transition process can change. Consequently, the extent of oscillation in the transition process increases along with the initial voltage and current fluctuations. These changes are dangerous if the boundary values of the component parameters are underestimated due to heating.

The study suggests a method of integrated electrothermal calculation in order to ensure thermal protection of pulse converters for electric power by creating combined models of the circuit elements in the form of a system of differential equations. Analysis of the characteristic roots of solutions of the differential equations of the system state in the form of matrix exponentials gives an idea about the nature of the transition process. This allows setting a threshold value of fluctuations and a time frame of the transition process while enabling a heated device. It becomes possible to stabilize the transition process by heating the components and to choose magnetic materials of inductors, taking into account the thermal processes.

As a result of this approach, thermal protection of power transformers extends to providing trouble­free operation at non­stationary modes of the components and extreme temperatures; it becomes possible to reduce the complexity and rigidity of the requirements to establishing a time frame for restarting the device.

Author Biographies

Roman Baraniuk, National technical university of Ukraine “Kyiv polytechnic institute” Peremogy ave., 37, Kyiv, Ukraine, 03056

Postgraduate student

Department of industrial electronic

Viktor Todorenko, National technical university of Ukraine “Kyiv polytechnic institute” Peremogy ave., 37, Kyiv, Ukraine, 03056

PhD, Associate professor

Department of industrial electronic

Dmitry Ushakov, National technical university of Ukraine “Kyiv polytechnic institute” Peremogy ave., 37, Kyiv, Ukraine, 03056

Postgraduate student

Department of industrial electronic

References

  1. Fabis, P. M., Shun, D., Windischmann, H. (1999). Thermal modelling of diamond-based power electronics package. Fifteenth Annual IEEE Semiconductor Thermal Measurement and Management Symposium, 98–104. doi: 10.1109/stherm.1999.762434
  2. Du, B., Hudgins, J. L., Santi, E., Bryant, A. T., Palmer, P. R., Mantooth, H. A. (2010). Transient Electrothermal Simulation of Power Semiconductor Devices. IEEE Trans. Power Electron., 25 (1), 237–248. doi: 10.1109/tpel.2009.2029105
  3. Leuca, T., Novac, M., Stanciu, B., Burca, A., Codrean, M. (2014). Using Some Coupled Numerical Models in Problems of Designing an Inductive Electrothermal Equipment. Journal of Electrical and Electronics Engineering, 7 (1), 77–80.
  4. Drofenik, U., Kolar, J. W. (2005). A general scheme for calculating switching-and conduction-losses of power semiconductors in numerical circuit simulations of power electronic systems. International Power Electronics Conference, IPEC’05.
  5. Drofenik, U., Cotet, D., Musing, A., Meyer, J. M., Kolar, J. W. (2007). Computationally efficient integration of complex thermal multi-chip power module models into circuit simulators. 2007 Power Conversion Conference - Nagoya, 550–557. doi: 10.1109/pccon.2007.373020
  6. Merrikh, A. A. (2015). Compact thermal modeling methodology for predicting skin temperature of passively cooled devices. Applied Thermal Engineering, 85, 287–296. doi: 10.1016/j.applthermaleng.2015.04.007
  7. Divins, D. (2007). Using Simulation to Estimate MOSFET Junction Temperature in a Circuit Application. International Rectifier, Power Electronics Technology Exhibition & Conference, 27.
  8. Schutze, T. (2008). Thermal equivalent circuit models. Germany: Infineon Technologies AG, 10.
  9. Malyna, D. (2007). Accelerated synthesis of electrically and thermally constrained power electronic converter systems. Eindhoven: Eindhoven University Press, 229.
  10. Soft Ferrites. Data Handbook MA01, Philips Components (1996). Netherlands: Philips Electronics, 887.
  11. Aluminium Electrolytic Capacitors (2014). Germany: Epcos AG, 40.
  12. Pressman, A. (1998). Switching Power Supply Design. New York: McGraw-Hill, Inc, 807.
  13. Kron, G. (1963). Diakoptics, The Piecewise Solution of Large Scale Systems. London: MacDonald & Co.
  14. Filaretov, V. V. (2010). Teorema Sigorskogo ob opredelitele summy matric i diakoptika. Electronics and communications, 2, 5–13.

Downloads

Published

2016-08-24

How to Cite

Baraniuk, R., Todorenko, V., & Ushakov, D. (2016). Calculation of electrothermal processes in pulse converters to provide thermal protection. Eastern-European Journal of Enterprise Technologies, 4(8(82), 19–25. https://doi.org/10.15587/1729-4061.2016.73541

Issue

Section

Energy-saving technologies and equipment