Simulation of the phase transformation front advancement during the swelling of fire retardant coatings

Authors

  • Juriy Tsapko National University of Life and Environmental Sciences of Ukraine Heroiv Oborony str., 15, Kyiv, Ukraine, 03041 V. D. Glukhovsky Scientific Research Institute for Binders and Materials Kyiv National University of Construction and Architecture Povitroflotskyi ave., 31, Kyiv, Ukraine, 03680, Ukraine https://orcid.org/0000-0001-9118-6872
  • Аleksii Tsapko National University of Life and Environmental Sciences of Ukraine Heroiv Oborony str., 15, Kyiv, Ukraine, 03041, Ukraine https://orcid.org/0000-0003-2298-068X

DOI:

https://doi.org/10.15587/1729-4061.2017.73542

Keywords:

intumescent coatings, oven temperature, weight loss, surface treatment, phase transformation front

Abstract

Description of the intumescent coating behavior at the time of formation of the porous structure is a separate and challenging task, covering both stages of the thermal insulation process: swelling of the coating and subsequent heat transfer which is formed by the swelling. Therefore, there is a need to study the formation conditions of a barrier for heat conduction and reveal a mechanism of phase transition from the coating film to the coke layer. In this regard, the mathematical model of the phase transformation front advancement during the swelling of fire-proof coatings is developed. According to the dependencies, it is found that the front line of the phase transformations of the coating under high temperature passes instantly. It is foundexperimentally that under the action of the heat flux on the samples for a short time at 190÷200 °C, there is an intense swelling of the coating, the height of the expanded foam coke layer increased to 22÷38 mm. As a result of testing, it is revealed that the phase transformation front moves in the direction of high temperature to form foam coke. The foaming front boundary line in the form of a thin layer, which is slightly shifted towards the temperature, divides the coating into two parts. On the one side, there is a swollen coke layer, the outer part of which moves at a certain speed, on the other side – the layer of the source material, where the temperature is not sufficient to start the foaming process and the speed of transformations is zero.

Author Biographies

Juriy Tsapko, National University of Life and Environmental Sciences of Ukraine Heroiv Oborony str., 15, Kyiv, Ukraine, 03041 V. D. Glukhovsky Scientific Research Institute for Binders and Materials Kyiv National University of Construction and Architecture Povitroflotskyi ave., 31, Kyiv, Ukraine, 03680

Doctor of Technical Sciences

Аleksii Tsapko, National University of Life and Environmental Sciences of Ukraine Heroiv Oborony str., 15, Kyiv, Ukraine, 03041

Posgraduate student

References

  1. Gyvlyoud, M. M., Bashynskiy, О. І., Vovk, S. Ya. (2011). Temperaturostiyki sylikatni zahysni pokryttya dlya metaliv ta splaviv na osnovi napovnenogo polimetylfenilsyloksanu. Zbirnyk naukovyh prazch Lvivskogo derzhavnogo universytetu BZHD, 18, 40–45.
  2. Artemenko, V. V. (2014). Eksperementalni doslidzhennya vognezahysnyh pokryttiv metalevyh konstruktsiy na osnovi napovnenyh polialyumosyloksaniv. Zbirnyk naukovyh prazch LDU BZHD. Pozhezhna bezpeka, 25, 6–11.
  3. Timofeeva, S. V., Malyasova, A. S., Helevina, O. G. (2011). Materialy ponizhenoy pozharnoy opasnosti s pokrytiem na osnove zhidkih siloksanovyh kauchukov, otverzhdennyh metodom poliprisoedineniya. Pozharovzryvobezopasnost, 20 (9), 22–25.
  4. Antsupov, E. V., Rodivilov, S. M. (2011). Antipireny dlya poristyh materialov. Pozharovzryvobezopasnost, 20 (5), 25–32.
  5. Gravit, M. V. (2013). Issledovanie vliyaniya razlichnyh faktotov nakoefitsient vspuchivaniya organorastvorimyh ognezaschitnyh pokrytiy. Lakokrasochnye materialy i ih primenenie, 6, 12–16.
  6. Nenahov, S. A., Pimenova, V. P. (2010). Fiziko-himiya vspenivayushchihsya ognezashchitnyh pokrytij na osnove polifosfata ammoniya (obzor literatury). Pozharovzryvobezopasnost, 19 (8), 11–58.
  7. Khalturinskiy, N. A., Rudakova, T. A. (2013). O mehanizme obrazovanija ognezaschitnyh vspuchivajuschihsja pokritijy. Izvestija JuFU. Tehnicheskie nauki, 8, 220–232.
  8. Sharshanov, A. Ja. (2001). Matematicheskaja model’ vspuchivajuschihsja ognezschitnih pokritijy. Problemi pozharnoy bezopasnosti, 30, 273–280.
  9. Cirpici, B. K., Wang, Y. C., Rogers, B. (2016). Assessment of the thermal conductivity of intumescent coatings in fire. Fire Safety Journal, 81, 74–84. doi: 10.1016/j.firesaf.2016.01.011
  10. Fan, F., Xia, Z., Li, Q., Li, Z. (2013). Effects of inorganic fillers on the shear viscosity and fire retardant performance of waterborne intumescent coatings. Progress in Organic Coatings, 76 (5), 844–851. doi: 10.1016/j.porgcoat.2013.02.002
  11. Kryvenko, P., Tsapko, Y., Guzii, S., Kravchenko, A. (2016). Determination of the effect of fillers on the intumescent ability of the organic-inorganic coatings of building constructions. Eastern-European Journal of Enterprise Technologies, 5 (10 (83)), 26–31. doi: 10.15587/1729-4061.2016.79869
  12. Taganov, I. N. (1979). Modelirovanie processov maso- I energoperenosa. Nelineynie sistemi. Leningrad: Himija, 208.
  13. Nenahov, S. A., Pimenova, V. P. (2011). Dinamika vspenivaniya ognezaschitnyh pokrytiy na osnovi organo-neorganicheskih sostavov. Pozharovzryvobezopasnost, 20 (8), 17–24.
  14. Samarskiy, A. A., Vabischevich, V. P. (2003). Vichislitelnaja teploperedacha. Мoscow: Editoril URSS, 784.
  15. Bahvalov, N. S., Zhidkov, N. P., Kobel’kov, G. M. (1987). Chislennie metodi. Мoscow: Nauka, 600.

Downloads

Published

2017-04-26

How to Cite

Tsapko, J., & Tsapko А. (2017). Simulation of the phase transformation front advancement during the swelling of fire retardant coatings. Eastern-European Journal of Enterprise Technologies, 2(11 (86), 50–55. https://doi.org/10.15587/1729-4061.2017.73542

Issue

Section

Materials Science