Development of gas dynamic linear systems for setting low pressures

Authors

DOI:

https://doi.org/10.15587/1729-4061.2016.75231

Keywords:

pressure reproduction, capillary, combiner and divider of flows, linear divider of pressures

Abstract

The results of research into the schemes of serial connection of capillaries – pressure dividers, both two­ and multi­capillary, were presented, with a linear dependency of change in inter­throttle pressures on supply pressure. Based on the analysis of the results, the schemes for multi­range pressure setting devices are built – a cascade connection of dividers and with binary ramification of pressure dividers.

For each of these schemes, the corresponding setting of dimensions of passable capillary channels can set such pressure drops in capillaries, at which the division pressure coefficients will vary by several orders of magnitude and remain constant. The designed schemes provide one direction and proportionality of all inter­throttle pressures (drops) of a scheme when changing the input supply pressure, but the scheme with binary branches of dividers enables setting the drops of pressures at the level of pascal particles.

The built four­decade device for setting the drops of pressures was explored by the obtained mathematical models under the action of impact factors (change in supply pressures of the setting device, temperature of throttled gas) on the coefficients of division. It was found that the influence of pressure changes in the designed scheme is practically absent while the temperature change of the gas flow by ±5 K does not exceed 0,2 %.

Application of the tools of pressure reproduction, based on the designed schemes, opens up the prospect of building high precision devices for one­stage preparation of complex gas mixtures with micro­concentrations of components, the devices for setting low and micro­rates of gases, as well as for testing the tools for measuring pressures.

Author Biographies

Ihor Dilay, Lviv Polytechnic National University Bandera str., 12, Lviv, Ukraine, 79013

Doctor of Technical Sciences, Associate Professor

Department of Automation of Heat and Chemical Processes

Zenoviy Teplukh, Lviv Polytechnic National University Bandera str., 12, Lviv, Ukraine, 79013

Doctor of Technical Sciences, Professor

Department of Automation of Heat and Chemical Processes

Roman Brylyns'kyy, Lviv Polytechnic National University Bandera str., 12, Lviv, Ukraine, 79013

Ph.D., Associate Professor

Department of Automation of Heat and Chemical Processes

Ivan-Roman Kubara, Lviv Polytechnic National University Bandera str., 12, Lviv, Ukraine, 79013

Department of Automation of Heat and Chemical Processes

References

  1. The 8th international Gas Analysis Symposium & Exhibition WTC Rotterdam, the Netherlands (2015). GAS 2015. Available at http://www.gas2015.org/publicaties/4349
  2. Demichelis, A., Sassi, G., Sassi, M. P. (2012). Metrological performances of mass flow controllers for dynamic gas diluition. 20th IMEKO World Congress 2012. Busan, Republic of Korea, 1, 1014–1017
  3. Xackevich, E. A. (2000). Kontrol' kachestva prirodnyx gazov xromatograficheskim metodom. Sankt-Peterburg: B.i., 218.
  4. Nelson, G. O. (1992). Gas mixtures: preparation and control. Lewis Publishers, 294.
  5. Dilay, I., Teplyukh, Z. (2014). Development of throttle selector of significantly different pressures for gas-dynamic tools. Eastern-European Journal of Enterprise Technologies, 6/7 (72), 28–33. doi: 10.15587/1729-4061.2014.31390
  6. Tepljuh, Z. N., Dilay, I. V. (2012). Zadatchik rashoda gaza-nositelja v hromatografe. Datchiki i sistemy, 2, 41–44.
  7. Kucheruk, V. Ju., Dudatjjev, I. A. (2011). Systema avtomatychnogho keruvannja koteljnoju ustanovkoju z kontrolem skladu dymovykh ghaziv na osnovi optyko-absorbcijnogho infrachervonogho metodu. Naukovi praci VNTU, 3, 1–7. Available at: http://www.nbuv.gov.ua/old_jrn/e-journals/VNTU/2011_3/2011-3.files/uk/11vykoim_ua.pdf
  8. Ivasenko, V. M., Prymisjkyj, V. P. (2014). Metody i prylady kontrolju vykydiv avtozapravnykh stancij. Visnyk NTU «KhPI», 60 (1102), 174–180.
  9. Bondarenko, V. L., Losyakov, N. P., Simonenko, Yu. M., D'yachenko, O. V., D'yachenko, T. V. (2012). Metody prigotovleniya smesej na osnove inertnyx gazov. Vestnik MGTU im. N.E'. Baumana. Ser. “Mashinostroenie”, 8, 41–53.
  10. Dantas, H. V., Barbosa, M. F., Moreira, P. N. T., Galvão, R. K. H., Araújo, M. C. U. (2015). An automatic system for accurate preparation of gas mixtures. Microchemical Journal, 119, 123–127. doi: 10.1016/j.microc.2014.11.011
  11. Vitenberg, A. G., Dobryakov, Y. G., Gromysh, E. M. (2010). Preparation of stable gas mixtures with microconcentrations of volatile substances in vapor-phase sources at elevated pressures. Journal of Analytical Chemistry, 65 (12), 1284–1290. doi: 10.1134/s1061934810120142
  12. Brewer, P. J., Miñarro, M. D., di Meane, E. A., Brown, R. J. C. (2014). A high accuracy dilution system for generating low concentration reference standards of reactive gases. Measurement, 47, 607–612. doi: 10.1016/j.measurement.2013.09.045
  13. Helwig, N., Schüler, M., Bur, C., Schütze, A., Sauerwald, T. (2014). Gas mixing apparatus for automated gas sensor characterization. Measurement Science and Technology, 25 (5), 055903. doi: 10.1088/0957-0233/25/5/055903
  14. Moshkovska, L., Prymiskyi, V., Nikolaiev, I. (2010). Metrolohichne zabezpechennia hazoanalitychnykh vymiriuvan. Standartyzatsiia, sertyfikatsiia, yakist, 2, 34–38.
  15. Vinš, V., Hošek, J., Hykl, J., Hrubý, J. (2015). An apparatus with a horizontal capillary tube intended for measurement of the surface tension of supercooled liquids. EPJ Web of Conferences, 92, 02108. doi: 10.1051/epjconf/20159202108
  16. Dilay, I., Teplukh, Z., Vashkurak, Y. (2014). Basic throttling schemes of gas mixture synthesis systems. Eastern-European Journal of Enterprise Technologies, 4/8 (70), 39–45. doi: 10.15587/1729-4061.2014.26257
  17. Stabylyzator absoljutnogo davlenyja SAD-307. Available at: http://www.oavt.ru/uploads/catalog/62_file.pdf
  18. Prohorov, V. A. (1984). Osnovy avtomatizacii analiticheskogo kontrolja himicheskih proizvodstv. Moscow: Himija, 320.

Downloads

Published

2016-08-24

How to Cite

Dilay, I., Teplukh, Z., Brylyns’kyy, R., & Kubara, I.-R. (2016). Development of gas dynamic linear systems for setting low pressures. Eastern-European Journal of Enterprise Technologies, 4(7(82), 30–36. https://doi.org/10.15587/1729-4061.2016.75231

Issue

Section

Applied mechanics