Formation of a rational change in controlling continuously variable transmission at the stages of a tractor’s acceleration and braking

Authors

DOI:

https://doi.org/10.15587/1729-4061.2016.75402

Keywords:

hydrovolumetric­mechanical transmission, rational change in parameters, hydraulic branch of transmission, coefficient of performance, evaluation criteria

Abstract

We formalized the criteria for evaluation of indicators of a wheeled tractor with continuously variable hydrovolumetric­mechanical transmission from the point of view of loading a hydraulic branch of hydrovolumetric transmission in direct and reverse power flows. The given description of the criteria is used for the formation of change in parameters of adjustment of hydraulic machines (hydraulic pump and hydraulic engine) in the process of acceleration and braking of a wheeled tractor.

We formed a rational change in parameters of adjustment of a hydraulic machine at the stages of acceleration and braking for a wheeled tractor with continuously variable hydrovolumetric­mechanical transmission that is made by the scheme of the differential at the output. In the study of the obtained dependency of parameters of adjustment of hydraulic machines, we determined the change of such indicators as the time of acceleration and braking; braking distance of a wheeled tractor; coefficient of performance of hydrovolumetric drive and hydrovolumetric­mechanical transmissions; the difference of working pressure in hydrovolumetric drive. It was found that when applying the rational change in the parameters of adjustment of hydraulic machines instead of the linear one at the stages of acceleration and braking, the zone of the highest value of the coefficient of performance of hydrovolumetric­mechanical transmission narrows, which, in turn, points to the loading of the hydraulic branch of a hydrovolumetric transmission.

Author Biographies

Vadim Samorodov, National Technical University "Kharkiv Polytechnic Institute" Bahalia str., 21, Kharkov, Ukraine, 61002

Doctor of Technical Sciences, Professor, Head of Department

Department of Car and Tractor Industry 

Andrey Kozhushko, National Technical University "Kharkiv Polytechnic Institute" Bahalia str., 21, Kharkov, Ukraine, 61002

PhD, Senior Lecturer

Department of Car and Tractor Industry 

Eugene Pelipenko, National Technical University "Kharkiv Polytechnic Institute" Bahalia str., 21, Kharkov, Ukraine, 61002

Assistant

Department of Car and Tractor Industry 

References

  1. Sheltsin, N., Frumkin, L., Ivanov, I. (2011). Sovremenie bestupenchatie transmisii selskohozyaistvenih traktorov. Traktori i selhozmashini, 11, 18–26.
  2. Beunk, H., Wilmer, H. (2002). So Arbeiten «Auto Powr» und «Eccom». Profi, 5.
  3. Renius, K. T., Resch, R. (2005). Continuously Variable Tractor Transmissions. ASAE – The Society for Engineering in Agricultural, Food, and Biological, Systems. Louisville, Kentucky, 35.
  4. Rydberg, K. (2010). Hydro-mechanical Transmissions. Fluid and Mechatronic Systems, 2, 51–60.
  5. Samorodov, V. B., Bondarenko, A. I., Kozhushko, A. P., Pelipenko, Е. S., Mittsel, M. O. (2014). Perspektyvni transmisii kolisnykh traktoriv. Visnyk Natsionalnoho tekhnichnoho universytetu «KhPI», 10 (1053), 3–10.
  6. Samorodov, V., Pelipenko, E. (2016). Analysis of the development modern transmission wheeled tractors. International Collection of scientific proceedings, 6 (13), 49–57.
  7. Popa, Gh., Dumitru, I. (2005). Theoretical studies regarding the tractive efforts for vehicles using the hydrostatic transmissions. Scientific Bulletin Series C: Fascicle Mechanics, Tribology, Machine Manufacturing Technology.
  8. Huhtala, K. (2010). Chengyan sun hydrostatic-mechanical power split CVT. Mechanical and Materials engineering on 8th of September 2010, 67.
  9. Pusha, A., Deldar, M., Izadian, A. (2013). Efficiency analysis of hydraulic wind power transfer system. IEEE International Conference on Electro-Information Technology, EIT 2013, 1–7. doi: 10.1109/eit.2013.6632717
  10. Ijas, M., Mäkinen, E. (2008). Improvement of total efficiency of hydrostatic transmission by using optimized control. Proceedings of the JFPS International Symposium on Fluid Power, 2008 (7-2), 271–276. doi: 10.5739/isfp.2008.271
  11. Coombs, D. (2012). Hydraulic efficiency of a hydrostatic transmission with variable displacement pump and motor. Mechanical and aerospace engineering, 82.
  12. Dasgupta, K., Kumar, N., Kumar, R. (2013). Steady state performance analysis of hydrostatic transmission system using two motor simulation drive. Journal of The Institution of Engineers (India): Series C, 94 (4), 357–363. doi: 10.1007/s40032-013-0084-y
  13. Samorodov, V. B. (2001). Vyivod obschego zakona upravleniya gidroob'emno-mehanicheskih transmissiy transportnyih mashin v protsesse pryamolineynogo razgona i sposob ego tehnicheskoy realizatsii. Integrirovannyie tehnologii i energosberezhenie, 4, 112–120.
  14. Kozhushko, A. P. (2014). Vyznachennia optymalnoho zakonu zminy parametriv rehuliuvannia hidromashyn hidroob’iemnoi peredachi v protsesi rozghonu kolisnykh traktoriv z hidroob’iemno-mekhanichnoiu transmisiieiu. Visnyk Sumskoho natsionalnoho ahrarnoho universytetu, 11 (26), 108–114.
  15. Bondarenko, A. I. (2015). Optymyzatsyia upravlenyia besstupenchatoi hidroob’iemno-mekhanichnoiu transmisiieiu kolesnikh traktorov pri ekstrenom tormozhenyy. Science in the modern information society, 1, 135–141.
  16. Bondarenko, A. I. (2015). Osoblyvosti systemy keruvannia protsesom halmuvannia samokhidnykh mashyn z hidroob’iemno-mekhanichnymy transmisiiamy. Pryladobuduvannia: stani perspektyvy, 27–28.
  17. Kozhushko, A. P. (2015). Osoblyvosti roboty kolisnykh traktoriv z hidroob’iemno-mekhanichnymy transmisiiamy. Silskohospodarski mashyny, 31, 70–82.
  18. Rebrov, A. Yu., Korobka, T. A., Lahman, S. V. (2012). Matematicheskaya model dizelnogo dvigatelya v bezrazmernyih velichinah s uchetom ego zagruzki i podachi topliva. VIsnik NatsIonalnogo tehnIchnogo unIversitetu «KhPI», 19, 31–36.
  19. Anosov, V. I., Samorodov, V. B., Rebrov, A. Yu., Pelipenko, E. S. (2014). Nauchnoe obosnovanie rezhimov ekspress-proverki tormoznoy sistemyi kolesnyih traktorov AO" HTZ". VIsnik NatsIonalnogo tehnIchnogo unIversitetu «KhPI», 8, 3–13.
  20. Metlyuk, N. F., Avtushko, V. P. (1980). Dinamika pnevmaticheskih i gidravlicheskih privodov avtomobilya. Moscow: Mashinostroenie, 231.
  21. Pettersson, K. (2013). Design Automation of Complex Hydromechanical Transmissions. Division of Fluid and Mechatronic Systems Department of Management and Engineering Linköping University. Linköping, Sweden, 85.

Downloads

Published

2016-08-24

How to Cite

Samorodov, V., Kozhushko, A., & Pelipenko, E. (2016). Formation of a rational change in controlling continuously variable transmission at the stages of a tractor’s acceleration and braking. Eastern-European Journal of Enterprise Technologies, 4(7(82), 37–44. https://doi.org/10.15587/1729-4061.2016.75402

Issue

Section

Applied mechanics