Increasing accuracy of measuring thermal conductivity of liquids by using the direct heating thermistor method

Authors

DOI:

https://doi.org/10.15587/1729-4061.2016.75459

Keywords:

thermal conductivity of materials, thermistor, thermistor direct heating, device for determining thermal conductivity

Abstract

The work is devoted to the research of thermal and physical characteristics of different materials by the nondestructive method. We propose to determine thermal conductivity of liquids by using the method of thermistor direct heating.

Essential disadvantage of many existing methods for determining thermal and physical characteristics (TPC) is the use of the methods of destructive control of materials and products, which significantly complicates measuring and makes it impossible to simultaneously measure a large number of experimental samples, as well as does not allow obtaining the required accuracy of measurement results.

So there exists a task of developing a device, which has high accuracy and can simultaneously measure a large number of thermal and physical characteristics of the studied samples, thereby increasing the efficiency of measurements.

We designed a device for measuring thermal conductivity of liquids, the principle of work of which is based on the method of thermistor direct heating. The results of experimental studies using reference liquids are presented, obtained with the help of the developed device. They demonstrated high accuracy and efficiency of its use in determining thermal conductivity of liquids. The result is achieved by introduction of additional coefficients of proportionality to the calculation formulas for determining thermal conductivity of the studied liquids, which are determined by testing the thermistors with the use of reference liquids with known TPC.

The conducted studies revealed that the value of measurement error per one session of 10 minutes by different probes amounted to not higher than 2 %, while in the course of measuring the same studied fluid by 60 probes simultaneously the error did not exceed 1.5 %.

Using the proposed method of thermistor direct heating, due to the small size of the probe and simple design of the device, allows applying it in various sectors of industry, medicine and biology to determine TPC of different materials with high accuracy of measurements.

Author Biographies

Sergey Matvienko, National Technical University of Ukraine "Kyiv Polytechnic Institute" Peremohy ave., 37, Kyiv, Ukraine, 03056

Instrument-making engineering department

Sergey Vysloukh, National Technical University of Ukraine "Kyiv Polytechnic Institute" Peremohy ave., 37, Kyiv, Ukraine, 03056

PhD, Associate Professor

Instrument-making engineering department

Oleksandr Martynchyk, Ukrainian Research Institute of Nutrition Chygoryna str., 18, Kyiv, Ukraine, 01042

Candidate of Medical Sciences, gastroenterologist

References

  1. Zharov, A. V., Savinskiy, N. G., Pavlov, A. A., Evdokimov, A. N. (2014). Eksperimental'nyy metod izmereniya teploprovodnosti nanozhidkosti. Fundamental'nye issledovaniya, 8–6, 1345–1350.
  2. Kutsakova, V. E., Frolov, S. V., Filippov, V. I., Danin, V. B. (2007). Kholodil'naya tekhnologiya pishchevykh produktov. Sankt-Peterburg: GIORD, 224.
  3. Filippov, V. I. (2015). Primenenie metodov regulyarnogo teplovogo rezhima dlya opredeleniya teplofizicheskikh kharakteristik pishchevykh produktov. Nauchn. zhurn. NIU ITMO. Seriya «Protsessy i apparaty pishchevykh proizvodstv», 3, 22–30.
  4. Puhlyk, B. M., Zajkov, S. V., Lojanych, O. M. (1995). Patent Ukrai'ny No. 7178 A. MPK A61B 5/145 (2006.01), A61B 10/00,G01N 33/48 (2006.01), G01N 33/49(2006.01). Prystrij dlja rejestracii' alergichnyh reakcij. No. 94011978; declareted: 31.03.1994; published: 30.06.1995, Byul. № 2, 2.
  5. Gladkyh, Ju. V., Zajkov, S. V., Puhlyk, B. M., Lojanych, O. M., Gladkyh, V. Ju., Lobynceva, G. S. (2004). Patent Ukrai'ny No. 63844 A. MPK A61B 5/00, G01K 7/16 (2006.01), G01N 27/08 (2006.01), G01N 33/48 (2006.01),G01N 33/483 (2006.01), G01N 33/487(2006.01), G01N 33/49 (2006.01), G01N 35/02 (2006.01), G01N 35/10 (2006.01),G05D 23/20 (2006.01), G05D 23/30(2006.01). Prystrij dlja rejestracii' procesiv u biologichnyh probah. No. 2003098744; declareted: 25.09.2003; published: 15.01.2004, Byul. № 1, 3.
  6. Lyubimova, D. A., Ponomarev, S. V., Divin, A. G. (2014). Izmerenie teplofizicheskikh svoystv teploizolyatsionnykh materialov metodom regulyarnogo rezhima tret'ego roda. Tambov: Izd-vo FGBOU VPO «TGTU», 79.
  7. Lipaev, A. A. (2010). Primenenie metoda periodicheskogo nagreva v eksperimental'noy teplofizike. Sovremennye metody i sredstva issledovaniy teplofizicheskikh svoystv veshchestv. Sankt-Peterburg: SPbGUNiPT, 182–195.
  8. Ivliev, A. D. (2010). Primenenie metoda temperaturnykh voln dlya issledovaniya teplofizicheskikh svoystv kondensirovannykh veshchestv. Sovremennye metody i sredstva issledovaniy teplofizicheskikh svoystv veshchestv. Sankt-Peterburg: SPbGUNiPT, 65–74.
  9. Klyuev, V. V. (Ed.) (2004). Nerazrushayushchiy kontrol'. Мoscow: Mashinostroenie, 679.
  10. Kuttner, H., Urban, G., Jachimowicz, A., Kohl, F., Olcaytug, F., Goiser, P. (1991). Microminiaturized thermistor arrays for temperature gradient, flow and perfusion measurements. Sensors and Actuators A: Physical, 27 (1-3), 641–645. doi: 10.1016/0924-4247(91)87064-a
  11. Ould-Lahoucine, C., Sakashita, H., Kumada, T. (2003). A method for measuring thermal conductivity of liquids and powders with a thermistor probe. International Communications in Heat and Mass Transfer, 30 (4), 445–454. doi: 10.1016/s0735-1933(03)00073-3
  12. Zhang, H., He, L., Zhao, G., Cheng, S., Gao, D. (2003). Approaches to extract thermal properties from dual-thermistor heat pulse experimental data. Measurement Science and Technology, 15 (1), 221–226. doi: 10.1088/0957-0233/15/1/031
  13. Dekusha, L. V., Grishchenko, T. G., Mendeleeva, T. V., Vorob'ev, L. I., Dekusha, O. L. (2005). Dekusha Influence of the determining factors on the measurement results of thermal conductivity by local thermal effects. Prom. Teplotekhnika, 27 (3), 74–79.
  14. Churikov, A. A., Senkevich, A. Y. (2002). The multi-stage method, information and measuring system non-destructive testing of thermal properties. Transactions of TGTU, 8 (1), 62–69.
  15. Dekusha, L. V., Mendeleeva, T. V., Vorob'ev, L. I., Dekusha, O. L. (2004). Features rapid measurement thermal conductivity of a sample finite thickness instrument IT-8. Promteplotekhnika, 26 (5), 76–81.
  16. Zotov, V. (2007). Principy postroenija sistem temperaturnogo kontrolja na NTC–termistorah kompanii Epcos. Komponenty i tehnologii, 71, 32–38.
  17. Mitsubishi chip thermistors. Mitsubishi materials. Available at: http://www.mmc.co.jp/adv/dev/english/contents/thermistor/
  18. SAW Components (2002). EPCOS AG. Availabe at: http://www.mouser.com/ds/2/136/B3574-50177.pdf
  19. Gabitov, F. R., Juzmuhametov, F. D., Tarzimanov, A. A., Zajnullin, I. M., Sattarov, I. R. (1999). Patent na A.S. No. 2139528. RF, MKI4 G01N25/18. Ustrojstvo i sposob dlja izmerenija teplofizicheskih svojstv zhidkostej i gazov. No. 98100282; declareted: 05.01.1998; published: 10.10.1999, Byul. № 28, 7.
  20. Kharalkar, N. M., Hayes, L. J., Valvano, J. W. (2008). Pulse-power integrated-decay technique for the measurement of thermal conductivity. Measurement Science and Technology, 19 (7), 075104. doi: 10.1088/0957-0233/19/7/075104
  21. Akulenko, D. V., Agapov, A. N., Procenko, I. G. (2012). Izmerenie kojefficienta teploprovodnosti sredy s ispol'zovaniem termistora prjamogo podogreva. Problemy tehnogennoj bezopasnosti i ustojchivogo razvitija, III, 49–52.
  22. Matvienko, S., Vysloukh, S., Matvienko, A., Martynchyk, A. (2016). Determination thermal and physical characteristics of liquids using pulse heating thermistor method. International Journal of Engineering Research & Science, 2 (5), 250–258.
  23. Vargaftik, N. B., Filippov, L. P., Tarzimanov, A. A., Tockij, E. E. (1990). Spravochnik po teploprovodnosti zhidkostej i gazov. Мoscow: Jenergoatomizdat, 352.

Downloads

Published

2016-08-30

How to Cite

Matvienko, S., Vysloukh, S., & Martynchyk, O. (2016). Increasing accuracy of measuring thermal conductivity of liquids by using the direct heating thermistor method. Eastern-European Journal of Enterprise Technologies, 4(5(82), 20–30. https://doi.org/10.15587/1729-4061.2016.75459