Interval fuzzy modeling of complex systems under condіtіons of іnput data uncertaіnty

Authors

DOI:

https://doi.org/10.15587/1729-4061.2016.75679

Keywords:

fuzzy logic system, interval fuzzy sets, uncertainty, cluster analysis

Abstract

Modeling natural systems and processes often requires making decisions under conditions of data uncertainty. There are a number of applications, in which obtaining data about the system is a time- and resource-consuming process. That is why it is advisable to develop decision making mathematical models and methods capable of functioning on input data that has gaps.

In the scope of this research an aggregated interval type-2 fuzzy data classification model was built. Interval type-2 fuzzy set mathematics operates membership grades in an interval form. This allows to take uncertainties intrinsic for an input vector into account, and enables working with an input vector that has gaps instead of some of the values. The proposed system supports involving one or more experts on early stages of the decision making process, more specifically in the phase of informative feature extraction. A feature set provided by every expert generates a separate model with an interval output. Such an approach achieves incorporating expert’s knowledge and experience into the decision making process along with information accumulated in the experimental data set. The results of multiple models are subsequently aggregated into a single interval, which is a generalized interval estimation of the system’s status based on data available at the moment, and allows to get an idea of the uncertainty associated with the decision taken.

It is also allowed to integrate third party models based on other decision making methods and technologies, such as a modification of the PCM cluster analysis method with interval membership grades.

The aggregated model was adapted for approximate evaluation of groundwater extraction perspective on different states of hydrogeological exploration. It was determined that in some cases it can save significant cost and human resources.

Author Biographies

Natalia Kondratenko, Vinnytsia National Technical University Khmelnytske highway, 95, Vinnytsia, Ukraine, 21021

PhD, associate professor, professor

Department of information security

Olha Snihur, Vinnytsia National Technical University Khmelnytske highway, 95, Vinnytsia, Ukraine, 21021

Postgraduate student

Department of information security

References

  1. Bardachev, Yu. N., Krjuchkovskyj, V. V., Malomuzh, T. V. (2010). Metodologicheskaya predpochtitelnost intervalnyih ekspertnyih otsenok pri prinyatii resheniy v usloviyah neopredelennosti. Visnyk Kharkivsjkogho nacionaljnogho universytetu, 890, 18–28.
  2. Pankratova, N. D., Zavodnyk, V. V. (2004). Sistemnyiy analiz i otsenivanie dinamiki ekologicheskih protsessov. Systemni doslidzhennja ta informacijni tekhnologhii, 2, 47–59.
  3. Borevskiy, B. V., Drobnohod, N. I., Yazvin, L. S. (1989). Otsenka zapasov podzemnyih vod. Kyiv: Vyscha shk. Golovnoe izd-vo, 407.
  4. Kondratenko, N. R., Snihur, O. O. (2015). Ocinka perspektyvnosti arteziansjkoi sverdlovyny z vykorystannjam ekspertnykh znanj. Materialy statej P'jatoi Mizhnarodnoi naukovo-praktychnoi konferencii "Informacijni tekhnologhii ta komp'juterna inzhenerija", 219–221.
  5. Minaev, Yu. N. (2003). Metodyi i algoritmyi resheniya zadach identifikatsii i prognozirovaniya v usloviyah neopredelennosti v neyrosetevom logicheskom bazise. Мoscow: Goryachaya Liniya-Telekom, 205.
  6. Cai, W., Chen, S., Zhang, D. (2007). Fast and robust fuzzy c-means clustering algorithms incorporating local information for image segmentation. Pattern Recognition, 40 (3), 825–838. doi: 10.1016/j.patcog.2006.07.011
  7. De Andrés, J., Lorca, P., de Cos Juez, F. J., Sánchez-Lasheras, F. (2011). Bankruptcy forecasting: A hybrid approach using Fuzzy c-means clustering and Multivariate Adaptive Regression Splines (MARS). Expert Systems with Applications, 38 (3), 1866–1875. doi: 10.1016/j.eswa.2010.07.117
  8. Wang, J., Kong, J., Lu, Y., Qi, M., Zhang, B. (2008). A modified FCM algorithm for MRI brain image segmentation using both local and non-local spatial constraints. Computerized Medical Imaging and Graphics, 32 (8), 685–698. doi: 10.1016/j.compmedimag.2008.08.004
  9. Martynіuk, T. B., Kupershteіn, L. M., Medvіd, A. V., Kozhemіako, A. V., Wojcіk, W., Yuchshenko, O. (2013). Applіcatіons of dіscrіmіnant analysіs methods іn medіcal dіagnostіcs. Optіcal Fіbers and Theіr Applіcatіons 2012, 8698, 4. doi: 10.1117/12.2019733
  10. Olіveіra, J. V., Pedrycz W. (2007). Advances іn Fuzzy Clusterіng and Іts Applіcatіons. John Wіley & Sons Ltd., 435.
  11. Kondratenko, N. R., Snihur, O. O. (2012). Intervaljna nechitka klasteryzacija na osnovi aljternatyvnykh kryteriiv jakosti. Naukovi visti NTUU «KPI», 2, 59–66.
  12. Martyniuk, T. B., Kozhemiako, A. V., Kupershtein, L. M. (2015). Formalization of the Object Classification Algorithm. Cybernetics and Systems Analysis, 51 (5), 751–756. doi: 10.1007/s10559-015-9767-0
  13. Kondratenko, N. R., Zelinsjka, N. B., Kuzemko, S. M. (2003). Diaghnostyka ghipotyreozu na osnovi nechitkoi loghiky z vykorystannjam intervaljnykh funkcij nalezhnosti. Naukovi visti NTUU «KPI», 4, 39–46.
  14. Zeng, J., Liu, Z.-Q. (2007). Type-2 Fuzzy Sets for Pattern Classification: A Review. 2007 IEEE Symposium on Foundations of Computational Intelligence, 193–200. doi: 10.1109/foci.2007.372168
  15. Kondratenko, N. R., Snihur, O. O. (2014). Nechitke modeljuvannja v zadachi ocinky jakosti zobrazhenj lazernykh pljam. Systemni doslidzhennja ta informacijni tekhnologhii, 3, 7–16.
  16. Liang, Q., Mendel, J. M. (2001). MPEG VBR video traffic modeling and classification using fuzzy technique. IEEE Transactions on Fuzzy Systems, 9 (1), 183–193. doi: 10.1109/91.917124
  17. Zaychenko, Yu. P., Esfandiyarfard, M., Zaika, A. I. (2007). Analiz investitsionnogo portfelya na osnove prognozirovaniya kursov aktsiy. Visnyk Nacionalnogo tekhnichnogo universytetutu Ukrainy «KPI», 47, 168–179.
  18. Liang, Q., Mendel, J. M. (2000). Interval type-2 fuzzy logic systems: theory and design. IEEE Transactions on Fuzzy Systems, 8 (5), 535–550. doi: 10.1109/91.873577
  19. Mendel, J. M. (2000). Uncertainty, fuzzy logic, and signal processing. Signal Processing, 80 (6), 913–933. doi: 10.1016/s0165-1684(00)00011-6
  20. Ocampo-Duque, W., Ferré-Huguet, N., Domingo, J. L., Schuhmacher, M. (2006). Assessing water quality in rivers with fuzzy inference systems: A case study. Environment International, 32 (6), 733–742. doi: 10.1016/j.envint.2006.03.009
  21. Gharibi, H., Mahvi, A. H., Nabizadeh, R., Arabalibeik, H., Yunesian, M., Sowlat, M. H. (2012). A novel approach in water quality assessment based on fuzzy logic. Journal of Environmental Management, 112, 87–95. doi: 10.1016/j.jenvman.2012.07.007
  22. Yan, H., Zou, Z., Wang, H. (2010). Adaptive neuro fuzzy inference system for classification of water quality status. Journal of Environmental Sciences, 22 (12), 1891–1896. doi: 10.1016/s1001-0742(09)60335-1
  23. Zou, Z., Yun, Y., Sun, J. (2006). Entropy method for determination of weight of evaluating indicators in fuzzy synthetic evaluation for water quality assessment. Journal of Environmental Sciences, 18 (5), 1020–1023. doi: 10.1016/s1001-0742(06)60032-6
  24. Iliev, B., Lindquist, M., Robertsson, L., Wide, P. (2006). A fuzzy technique for food- and water quality assessment with an electronic tongue. Fuzzy Sets and Systems, 157 (9), 1155–1168. doi: 10.1016/j.fss.2005.12.014
  25. Simeonov, V., Stratis, J. A., Samara, C., Zachariadis, G., Voutsa, D., Anthemidis, A. et. al. (2003). Assessment of the surface water quality in Northern Greece. Water Research, 37 (17), 4119–4124. doi: 10.1016/s0043-1354(03)00398-1
  26. Dahiya, S., Singh, B., Gaur, S., Garg, V. K., Kushwaha, H. S. (2007). Analysis of groundwater quality using fuzzy synthetic evaluation. Journal of Hazardous Materials, 147 (3), 938–946. doi: 10.1016/j.jhazmat.2007.01.119
  27. Singh, B., Dahiya, S., Jain, S., Garg, V. K., Kushwaha, H. S. (2007). Use of fuzzy synthetic evaluation for assessment of groundwater quality for drinking usage: a case study of Southern Haryana, India. Environmental Geology, 54 (2), 249–255. doi: 10.1007/s00254-007-0812-9
  28. Dou, C., Woldt, W., Dahab, M., Bogardi, I. (1997). Transient Ground-Water Flow Simulation Using a Fuzzy Set Approach. Ground Water, 35 (2), 205–215. doi: 10.1111/j.1745-6584.1997.tb00076.x
  29. Li, J., Huang, G. H., Zeng, G., Maqsood, I., Huang, Y. (2007). An integrated fuzzy-stochastic modeling approach for risk assessment of groundwater contamination. Journal of Environmental Management, 82 (2), 173–188. doi: 10.1016/j.jenvman.2005.12.018
  30. Nobre, R. C. M., Rotunno Filho, O. C., Mansur, W. J., Nobre, M. M. M., Cosenza, C. A. N. (2007). Groundwater vulnerability and risk mapping using GIS, modeling and a fuzzy logic tool. Journal of Contaminant Hydrology, 94 (3-4), 277–292. doi: 10.1016/j.jconhyd.2007.07.008
  31. Dixon, B. (2005). Applicability of neuro-fuzzy techniques in predicting ground-water vulnerability: a GIS-based sensitivity analysis. Journal of Hydrology, 309 (1-4), 17–38. doi: 10.1016/j.jhydrol.2004.11.010
  32. Dixon, B. (2005). Groundwater vulnerability mapping: A GIS and fuzzy rule based integrated tool. Applied Geography, 25 (4), 327–347. doi: 10.1016/j.apgeog.2005.07.002
  33. Kondratenko, N. R. (2014). Pidvyshhennya adekvatnosti nechitkykh modelej za rakhunok vykorystannya nechitkykh mnozhyn typu 2. Naukovi visti NTUU «KPI», 6, 56–61.
  34. Ivahnenko, A. G. (1987). Modelirovanie slozhnyih sistem po eksperimentalnyim dannyim. Мoscow: Rado i svyaz, 120.
  35. Kondratenko, N. R. (2016). Application of Type-2 Membership Functions in Fuzzy Logic Systems. Research Bulletin of the National Technical University of Ukraine “Kyiv Politechnic Institute”, 2, 43–50. doi: 10.20535/1810-0546.2016.2.51636
  36. Karnik, N. N., Mendel, J. M., Qilian Liang. (1999). Type-2 fuzzy logic systems. IEEE Transactions on Fuzzy Systems, 7 (6), 643–658. doi: 10.1109/91.811231
  37. Kondratenko, N. R., Snihur, O. O. (2015). Evolyucijnyj poshuk informatyvnykh oznak iz zaluchennyam eksperta v zadachi ocinky yakosti arteziansjkoi vody. Visnyk Vinnycjkogho politekhnichnogho instytutu, 3, 96–101.
  38. Harkevich, A. A. (Ed.) (1959). Teoriya informatsii i ee prilozheniya (sbornik perevodov). Мoscow: Fizmatgiz, 328.

Downloads

Published

2016-08-30

How to Cite

Kondratenko, N., & Snihur, O. (2016). Interval fuzzy modeling of complex systems under condіtіons of іnput data uncertaіnty. Eastern-European Journal of Enterprise Technologies, 4(4(82), 20–28. https://doi.org/10.15587/1729-4061.2016.75679

Issue

Section

Mathematics and Cybernetics - applied aspects