Obtaining stabilized nanodispersed iron based on organofilized montmorillonite

Authors

DOI:

https://doi.org/10.15587/1729-4061.2016.79452

Keywords:

stabilized nanodispersed iron, montmorillonite, organomontmorillonite, sorption, chromium (VI), rheological properties

Abstract

The synthesis of zero­valent nano­dimension iron on the surface of montmorillonite and organomontmollonite by reducing aqueous solutions of Fe2+ salts by sodium boronhydride was conducted. The results of RFA and IR­spectroscopy indicate formation of a monolayer of SAS (HDTMA) both on the outer surface of the particles of montmorillonite and among structural packages of montmorillonite. In this case, organofilization of the surface contributes to the formation of more dispersed particles of zero­valent iron.

The physical and chemical features of the processes of sorption cleaning of contaminated waters from chromium(VI) compounds using the obtained nanodispersed material were explored. It was established that the sorption of ions Cr(VI) by the composite adsorbent based on zero­valent iron and organomontmorillonite amounts to 120 mg/g of Fe, which significantly exceeds sorption for the original montmorillonite, organomontmorillonite, nano­dimension iron and the composite sorbent based on montmorilonite and nano­dimension iron.

Based on the study of structural and rheological properties, it was established that with the content of iron in sorbent equal to 0,037÷0,146 %, the suspension remains resistant to aggregation and sedimentation. This, together with their rather high sorption characteristics, makes it appropriate to use aqueous dispersions of organomontmorillonite with the applied layer of the synthesized highly dispersed reactive material when cleaning ground waters from ions of heavy metals (chromium) using the latest environmental technologies based on pumping aqueous dispersions  of nanomaterial  into  contaminated layers of soil.

Author Biographies

Nataliya Zhdanyuk, National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute" Peremogy ave., 37, Kyiv, Ukraine, 03056

Assistant

Department of chemical technology of ceramics and glass

Irina Kovalchuk, Institute of Sorption and Problems of NAS Endoecology Generala Naumova str., 13, Kyiv, Ukraine, 03164

PhD, Senior Researcher 

Borys Kornilovych, National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute" Peremogy ave., 37, Kyiv, Ukraine, 03056

Corresponding Member of NAS Ukraine, Doctor of Chemical Science, Professor,  Head of Department

Department of chemical technology of ceramics and glass

References

  1. Gnesin, G. G., Skorohod, V. V. (2008). Neorganicheskoe materialovedenie: entsykloped. izd. v 2 t. Kyiv: Naukova dumka, 1: Osnovy nauki o materialah, 1152.
  2. Shabanova, N. A., Popov, V. V., Sarkisov, P. D. (2007). Khimiya i tekhnologiya nanodispersnyh oksidov. Moscow: Akademkniga, 309.
  3. Scott, T. B., Popescu, I. C., Crane, R. A., Noubactep, C. (2011). Nano-scale metallic iron for the treatment of solutions containing multiple inorganic contaminants. Journal of Hazardous Materials, 186 (1), 280–287. doi: 10.1016/j.jhazmat.2010.10.113
  4. Trujillo-Reyes, J., Peralta-Videa, J. R., Gardea-Torresdey, J. L. (2014). Supported and unsupported nanomaterials for water and soil remediation: Are they a useful solution for worldwide pollution? Journal of Hazardous Materials, 280, 487–503. doi: 10.1016/j.jhazmat.2014.08.029
  5. Yan, W., Herzing, A. A., Kiely, C. J., Zhang, W. (2010). Nanoscale zero-valent iron (nZVI): Aspects of the core-shell structure and reactions with inorganic species in water. Journal of Contaminant Hydrology, 118 (3-4), 96–104. doi: 10.1016/j.jconhyd.2010.09.003
  6. Fu, F., Dionysiou, D. D., Liu, H. (2014). The use of zero-valent iron for groundwater remediation and wastewater treatment: A review. Journal of Hazardous Materials, 267, 194–205. doi: 10.1016/j.jhazmat.2013.12.062
  7. Zhan, J., Zheng, T., Piringer, G., Day, C., McPherson, G. L., Lu, Y. et. al. (2008). Transport Characteristics of Nanoscale Functional Zerovalent Iron/Silica Composites for in Situ Remediation of Trichloroethylene. Environmental Science & Technology, 42 (23), 8871–8876. doi: 10.1021/es800387p
  8. Xu, J., Gao, N., Tang, Y., Deng, Y., Sui, M. (2010). Perchlorate removal using granular activated carbon supported iron compounds: Synthesis, characterization and reactivity. Journal of Environmental Sciences, 22 (11), 1807–1813. doi: 10.1016/s1001-0742(09)60323-5
  9. Qiu, X., Fang, Z., Liang, B., Gu, F., Xu, Z. (2011). Degradation of decabromodiphenyl ether by nano zero-valent iron immobilized in mesoporous silica microspheres. Journal of Hazardous Materials, 193, 70–81. doi: 10.1016/j.jhazmat.2011.07.024
  10. Zhang, X., Lin, S., Chen, Z., Megharaj, M., Naidu, R. (2011). Kaolinite-supported nanoscale zero-valent iron for removal of Pb2+ from aqueous solution: Reactivity, characterization and mechanism. Water Research, 45 (11), 3481–3488. doi: 10.1016/j.watres.2011.04.010
  11. Fan, M., Yuan, P., Chen, T., He, H., Yuan, A., Chen, K. et. al. (2010). Synthesis, characterization and size control of zerovalent iron nanoparticles anchored on montmorillonite. Chinese Science Bulletin, 55 (11), 1092–1099. doi: 10.1007/s11434-010-0062-1
  12. Tobilko, V., Makovetskyi, O., Kovalchuk, I., Kornilovych, B. (2015). Removal of chromium(VI) and uranium(VI) from aqueous solutions by the immobilized nanoscale Fe0. Eastern-European Journal of Enterprise Technologies, 5 (10 (77)), 34–40. doi: 10.15587/1729-4061.2015.48885
  13. Li, S., Wu, P., Li, H., Zhu, N., Li, P., Wu, J. et. al. (2010). Synthesis and characterization of organo-montmorillonite supported iron nanoparticles. Applied Clay Science, 50 (3), 330–336. doi: 10.1016/j.clay.2010.08.021
  14. Pang, Z., Yan, M., Jia, X., Wang, Z., Chen, J. (2014). Debromination of decabromodiphenyl ether by organo-montmorillonite-supported nanoscale zero-valent iron: Preparation, characterization and influence factors. Journal of Environmental Sciences, 26 (2), 483–491. doi: 10.1016/s1001-0742(13)60419-2
  15. Tobilko, V., Kornilovych, B. (2015). Synthesis and sorption properties of composite materials based on nanoscale Fe0. Eastern-European Journal of Enterprise Technologies, 4 (5 (76)), 22–27. doi: 10.15587/1729-4061.2015.46580
  16. Bergaya, F., Theng, B. K. G., Lagaly, G. (2013). Developments in clay science V. 5. Handbook of clay science. Amsterdam: Elsevier, 1674.
  17. Kovalchuk, I., Holembiovskyi, А., Kornilovych, B. (2011). Sorbtsiia ioniv Cr(VI) і U(VI) palyhorskitom, modyfikovanym kationnymy poverkhnevo-aktyvnymy rechovynamy. Dopovidi Natsionalnoyi Akademiyi nauk Ukrayiny, 11, 131–136.
  18. Brindley, G., Brown, G. (1980). Crystal structures of clay minerals and their X - ray indentification. London: Miner. Soc., 496.
  19. Grinvud, N., Ernsho, A. (2010). Khimiya elementov: v 2 kn. Book 1. Мoscow: BINOM. Laboratoriia znanii, 670.
  20. Wu, P., Li, S., Ju, L., Zhu, N., Wu, J., Li, P., Dang, Z. (2012). Mechanism of the reduction of hexavalent chromium by organo-montmorillonite supported iron nanoparticles. Journal of Hazardous Materials, 219-220, 283–288. doi: 10.1016/j.jhazmat.2012.04.008
  21. Kornilovych, B., Kochuk, Y., Kovalchuk, I., Khlopas, О., Bashchak, О. (2016). Zakhyst pidzemnykh vod vid zabrudnennia spolukamy uranu za dopomohoyu pronyknykh reaktsiinykh barieriv. Dopovidi Natsionalnoyi Akademiyi nauk Ukrayiny, 3, 113–120.

Downloads

Published

2016-10-30

How to Cite

Zhdanyuk, N., Kovalchuk, I., & Kornilovych, B. (2016). Obtaining stabilized nanodispersed iron based on organofilized montmorillonite. Eastern-European Journal of Enterprise Technologies, 5(6 (83), 23–28. https://doi.org/10.15587/1729-4061.2016.79452

Issue

Section

Technology organic and inorganic substances