The biotechnological ways of blue-green algae complex processing

Authors

DOI:

https://doi.org/10.15587/1729-4061.2016.79789

Keywords:

blue­green algae, methanogenesis, environment­friendly biotechnology, biofuel, biogas, biofertilizers

Abstract

The results of long­term research of various ways and methods of collection and processing of blue­green algae that cause “bloom” of the Dnieper reservoirs were presented. The possibility and feasibility of the blue­green algae biomass processing to biogas by methanogenesis were substantiated. It was found experimentally that preliminary mechanical cavitation of the blue­green algae biomass increases the biogas yield by 21.5 %. It was determined that the biogas produced contains up to 72 % of methane and hydrogen, up to 21 % of carbon dioxide, up to 6.5 % of molecular nitrogen. Oxygen, carbon oxide (II), hydrogen sulfide and other impurities constitute up to 2 % of the biogas volume. Biotesting of the spent substrate to determine its toxicity for further use as a biofertilizer in agriculture and forestry was held. Modern methods of electron microscopy found that the average diameter of cells of blue­green algae Microcystis aeruginosa is 3.14 microns. The flow diagram of the blue­green algae biomass complex processing was proposed. It consists in removal of valuable components for medicine, cosmetics, pharmaceuticals, production of technical detergents, mixtures of aliphatic alcohols as biofuels or additives to gasoline. Thus, it is possible to obtain more biogas by involving the spent activated sludge from sewage treatment facilities in methanogenesis. This will improve the treatment quality of wastewater of various productions. The similarity of the nutritional value of the blue­green algae spent substrate to the green biomass of plants in terms of the elemental composition was experimentally proved. The environmental, energy saving and agricultural efficiency of the cyanogen biomass use was proved.

Author Biographies

Volodymyr Nykyforov, Mykhailo Ostrohradskyi Kremenchuk National University Pershotravneva str., 20, Kremenchuk, 39600, Ukraine

Doctor of Biological Science, Professor, First Vice-Rector

Department of Biotechnology and Human Health

Myroslav Malovanyy, Lviv Polytechnic National University S. Bandera str., 12, Lviv, Ukraine, 79013

Doctor of Technical Science, Professor, Head of Department

Department of Ecology and Sustainable Environmental Management

Tatyana Kozlovskaya, Mykhailo Ostrohradskyi Kremenchuk National University Pershotravneva str., 20, Kremenchuk, 39600, Ukraine

PhD, Associate Professor

Department of Biotechnology and Human Health

Olha Novokhatko, Mykhailo Ostrohradskyi Kremenchuk National University Pershotravneva str., 20, Kremenchuk, 39600, Ukraine

PhD, Associate Professor, Head of Department

Department of Biotechnology and Human Health

Sergii Digtiar, Kremenchuk Mykhailo Ostrohradskyi National University Pershotravneva str., 20, Kremenchuk, 39600, Ukraine

Senior Lector

Department of Biotechnology and Human Health

References

  1. Rajeshwari, K. R., Rajashekhar, M. (2011). Biochemical composition of seven species of cyanobacteria isolated from different aquatic habitats of Western Ghats, Southern India. Brazilian Archives of Biology and Technology, 54 (5), 849–857. doi: 10.1590/s1516-89132011000500001
  2. Mussgnug, J. H., Klassen, V., Schlüter, A., Kruse, O. (2010). Microalgae as substrates for fermentative biogas production in a combined biorefinery concept. Journal of Biotechnology, 150 (1), 51–56. doi: 10.1016/j.jbiotec.2010.07.030
  3. Hoiczyk, E., Hansel, A. (2000). Cyanobacterial Cell Walls: News from an Unusual Prokaryotic Envelope. Journal of Bacteriology, 182 (5), 1191–1199. doi: 10.1128/jb.182.5.1191-1199.2000
  4. Rós, P., Silva, C., Silva-Stenico, M., Fiore, M., Castro, H. (2013). Assessment of Chemical and Physico-Chemical Properties of Cyanobacterial Lipids for Biodiesel Production. Marine Drugs, 11 (7), 2365–2381. doi: 10.3390/md11072365
  5. Ehimen, E. A., Sun, Z. F., Carrington, C. G., Birch, E. J., Eaton-Rye, J. J. (2011). Anaerobic digestion of microalgae residues resulting from the biodiesel production process. Applied Energy, 88 (10), 3454–3463. doi: 10.1016/j.apenergy.2010.10.020
  6. Sirenko, L. A. (2002). Aktivnost solntsa i «tsvetenie» vodyi. Gidrobiologicheskiy zhurnal, 38 (4), 3–9.
  7. Dzyuban, A. N. (2006). Sezonnaya dinamika mikrobiologicheskogo tsikla metana v vode pribrezhnyih melkovodiy Ryibinskogo vodohranilischa. Gidrobiologicheskiy zhurnal, 42 (6), 47–51.
  8. Ramochnaya konventsiya OON po izmeneniyu klimata (1992). Rio-de-Zhaneyro. Available at: http://www.un.org/ru/documents/decl_conv/conventions/climate_framework_conv.shtml
  9. Direktiva 2000/60/ES Evropeyskogo Parlamenta i Soveta «Ob ustanovlenii ramok deyatelnosti Soobschestva v oblasti vodnoy politiki» (2000). Bryussel. Available at: http://search.ligazakon.ua/l_doc2.nsf/link1/MU00298.html
  10. Tselevaya kompleksnaya programma nauchnyih issledovaniy NAN Ukrainyi «Biomassa kak toplivnoe syire». Available at: http://search.ligazakon.ua /l_doc2.nsf/link1/MUS14756.html
  11. Rastrovyj ehlektronnyj mikroskop REM-106. Available at: http://www.ukrrospribor.com.ua/?me=21&id=360
  12. Mobil'nyj precizionnyj analizator Expert 3L. Available at: http://inam.kiev.ua/expert-3l/
  13. Malovanyy, V., Nykyforov, V., Kharlamova, О., Synelnikov, О. (2015). Mathematical model of the process of synthesis of biogas from blue-green algae. Ecological Safety, 1 (19), 58–63.
  14. Nykyforov, V. V., Elizarov, M. O., Pasenko, A. V., Digtyar, S. V., Shlik, S. V. (2016). Patent na korisnu model no.104743 (Ukraine) Sposib virobnitstva metanu ta dobriva. u2015 09476; decelerated: 08.10.2015; puublished: 10.02.2016; Bul. 3, 3.
  15. Ratushnaya, M. Ya., Kosenko, L. V., Kirillov, A. S., Sokoda, V. S. (1967). O himicheskom sostave nekotoryih sinezelyonyih vodorosley. Mikrobiologiya, 29 (1), 3–33.
  16. Nykyforov, V. V. (2010). O prirodoohrannyih i energosberegayuschih perspektivah ispolzovaniya sinezelenyih vodorosley. Promyishlennaya botanika, 10, 193–196.
  17. Malovanyy, М., Nykyforov, V., Kharlamova, О., Synelnikov, А., Dereyko, Kh. (2016).Reduction of the environmental threat from uncontrolled development of cyanobacteria in the waters of the Dnieper reservoirs. Environmental problems, 1 (1), 61–64.
  18. Nykуforov, V. V., Kozlovskaya, T. F., Degtyar, S. V. (2008). Gidrobiontyi kak novyiy substrat dlya polucheniya klar-gaza. Ekologichna bezpeka, 3 (3), 28–30.

Downloads

Published

2016-10-30

How to Cite

Nykyforov, V., Malovanyy, M., Kozlovskaya, T., Novokhatko, O., & Digtiar, S. (2016). The biotechnological ways of blue-green algae complex processing. Eastern-European Journal of Enterprise Technologies, 5(10 (83), 11–18. https://doi.org/10.15587/1729-4061.2016.79789