A decision tree in a classification of fire hazard factors

Authors

DOI:

https://doi.org/10.15587/1729-4061.2016.79868

Keywords:

fire risk factors, data mining, classification algorithm C4.5, decision tree

Abstract

Today in Ukraine there is an increased level of natural and technogenic threats and fire hazards. Therefore, an important task in identifying and assessing risks and threats is to determine fixed and variable factors that affect the potential for fires and to classify them by the available features. To solve the problem of classifying numerous factors of fires, we suggest using the method of building decision trees, which is a method of presenting rules in a hierarchical consistent structure where each object corresponds to a single node through which the decision is made. The use of the C4.5 algorithm helps build a branched decision tree and classify factors of fire danger. Three main classes of permanent environmental factors have been distinguished, which include land cover, topography, and climatic resources; the variable factors are the indices NDVI, DMP, and SWI. They, in turn, are divided into subclasses.

The calculated weights can be used for simulating a fire hazard. The obtained values range from 0 to 1, where a value of 0 prevents natural fires (e. g., water surfaces), but values close to 1 indicate a high hazard potential of natural fires.

The decision trees, obtained in the process of classification, are important for planning measures to prevent natural fires. They can also be used for zoning in terms of fire hazards in spatial modeling of fires, mathematical modeling of their effects, as well as in further monitoring and prediction of natural fires.

Author Biographies

Nataliia Pashynska, Taras Shevchenko National University of Kyiv Volodymyrska str., 60, Kyiv, Ukraine, 01033

PhD, Senior Researcher

Department of intellectual and information systems

Vitaliy Snytyuk, Taras Shevchenko National University of Kyiv Volodymyrska str., 60, Kyiv, Ukraine, 01033

Doctor of Engineering Science, Professor, Head of Department

Department of intellectual and information systems

Viktor Putrenko, National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute" Peremohy ave., 37, Kyiv, Ukraine, 03056

PhD, Senior Researcher

Education and scientific complex "Institute for Applied System Analysis"

Andriy Musienko, Taras Shevchenko National University of Kyiv Volodymyrska str., 60, Kyiv, Ukraine, 01033

PhD, Researcher

Department of intellectual and information systems

References

  1. Analitychnyi ohliad stanu tekhnohennoi ta pryrodnoi bezpeky v Ukraini za 2015 rik (2015). UkrNDITsZ. Available at: http://undicz.dsns.gov.ua/ua/Analitichniy-oglyad-stanu-tehnogennoyi-ta-prirodnoyi-bezpeki-v-Ukrayini.html
  2. Hawbaker, T. J., Radeloff, V. C., Syphard, A. D., Zhu, Z., Stewart, S. I. (2008). Detection rates of the MODIS active fire product in the United States. Remote Sensing of Environment, 112 (5), 2656–2664. doi: 10.1016/j.rse.2007.12.008
  3. Atlas of natural hazards & risks of Georgia (2013). Caucasus Environmental NGO Network. Available at: http://drm.cenn.org/index.php/en/
  4. Yasynskyy, F. N., Potёmkyna, O. V., Sydorov, S. H., Evseeva, A. V. (2011) Prohnozyrovanye veroyatnosty voznyknovenyya lesnуkh pozharov s pomoshch'yu neyrosetevoho alhorytma na mnohoprotsessornoy vichyslytel'noy tekhnyke. Vestnyk YHEU, 2, 1–4.
  5. Oneal, C. B., Stuart, J. D., Steven, S., Fox, L. (2006). Geographic Analysis of Natural Fire Rotation in the California Redwood Forest During the Suppression Era. Fire Ecology, 2 (1), 73–99. doi: 10.4996/fireecology.0201073
  6. Jovanovic, R., Bjeljac, Z., Miljkovic, O., Terzic, A. (2013). Spatial analysis and mapping of fire risk zones and vulnerability assessment: Case study mt. Stara planina. Zbornik Radova Geografskog Instituta Jovan Cvijic, SANU, 63 (3), 213–226. Available at: http://www.doiserbia.nb.rs/img/doi/0350-7599/2013/0350-75991303213J.pdf doi: 10.2298/ijgi1303213j
  7. Guo, H. (2010). Understanding global natural disasters and the role of earth observation. International Journal of Digital Earth, 3 (3), 221–230. doi: 10.1080/17538947.2010.499662
  8. Cheng, T., Wang, J. (2006) Applications of spatio-temporal data mining and knowledge for forest fire. In. Proceedings of the ISPRS Technical Commission VII Mid Term Symposium, 148–153.
  9. Cortez, P. Morais, A. (2007) Data Mining Approach to Predict Forest Fires using Meteorological Data. New trends in artificial intelligence: proceedings of the 13th Portuguese Conference on Artificial Intelligence (EPIA 2007), 512–523.
  10. Putrenko, V. V. (2016). Data mining of the risk of natural fires based on geoinformation technologies. Technology Audit and Production Reserves, 4(3(30)), 67–72. doi: 10.15587/2312-8372.2016.76154
  11. Özbayoğlu, A. M., Bozer, R. (2012). Estimation of the Burned Area in Forest Fires Using Computational Intelligence Techniques. Procedia Computer Science, 12, 282–287. doi: 10.1016/j.procs.2012.09.070
  12. Snitjuk, V. E., Bychenko, А. А. (2007) Jevoljucionnoe modelirovanie processa rasprostranenija pozhara, Proc. XIII-th Int. Conf. Knowledge-dialogue-Solution, 6, 247–254
  13. Copernicus Global Land Service (2016). Available at: http://land.copernicus.eu/global/products/dmp
  14. Hunt, E., Marin, J., Stone, P. (1966). Experiments in induction. New York; London: Academic P, 247.
  15. Lepshova, E. S., Bіllіh, V. A. (2012). Realyzatsyia y rasparallelyvanye alhorytma yntellektualnoho analyza dannykh, osnovannoho na dereviakh reshenyi. Vysokoproyzvodytelnye parallelnye vychyslenyia na klasternykh systemakh, 247–251.
  16. Quinlan, J. R. (1993). C4.5: Programs for Machine Learning. San Mateo: Morgan Kaufmann Publishers Inc, 302.

Downloads

Published

2016-10-30

How to Cite

Pashynska, N., Snytyuk, V., Putrenko, V., & Musienko, A. (2016). A decision tree in a classification of fire hazard factors. Eastern-European Journal of Enterprise Technologies, 5(10 (83), 32–37. https://doi.org/10.15587/1729-4061.2016.79868