Strength and durability analysis of a flat spring at vibro-impact loadings

Authors

  • Volodymyr Gursky Lviv Polytechnic National University Bandera str., 12, Lviv, Ukraine, 79013, Ukraine https://orcid.org/0000-0002-7141-0280
  • Igor Kuzio Lviv Polytechnic National University Bandera str., 12, Lviv, Ukraine, 79013, Ukraine

DOI:

https://doi.org/10.15587/1729-4061.2016.79910

Keywords:

vibro­impact, vibro­impact beam, method of finite elements, contact stresses, durability, own frequencies of oscillations

Abstract

Volodymyr Gursky, Igor Kuzio

We present the scheme of realization of a vibro­impact system with one flat spring and locally focused mass. The means of implementation of asymmetric piecewise linear elastic characteristic is the use of two intermediate cylindrical supports. We calculated the bending and contact stresses that take into account the asymmetry of change in the elastic characteristic and instantaneous displacement of the local mass. The parametric dependency is taken into account of the contact rigidity between the cylindrical support and the flat spring on the displacement of the local mass. This is carried out in order to assess in the course of dynamic analysis the stressed state of a flat spring under conditions of implementation of elastic characteristic. The contact rigidity is taken into account through the change in own oscillations frequency of the spring. We numerically solved the dynamic problem and obtained the ratio between kinematic characteristics (displacement and acceleration) and parameters of the stressed state (bending and contact stresses).

The contact stresses are nonlinearly dependent on displacement, the bending –linearly. The strength margin factors by the stresses were defined, as well as the equivalent strength margin factor and the lifetime of the rod as the function of effort of perturbation. The equivalent strength margin factor takes into account the joint action of bending asymmetric and contact stresses. The obtained formulas realize the method of analysis of the stressed state under conditions of vibro­impact loadings. The method may be successfully applied in the course of design and synthesis of resonant vibro­impact systems and modes.

Author Biographies

Volodymyr Gursky, Lviv Polytechnic National University Bandera str., 12, Lviv, Ukraine, 79013

PhD, Senior Lecturer

Department of Mechanics and Automation of Mechanical Engineering

Igor Kuzio, Lviv Polytechnic National University Bandera str., 12, Lviv, Ukraine, 79013

Doctor of Technical Sciences, Professor, Head of Department

Department of Mechanics and Automation of Mechanical Engineering

References

  1. Cyfanskij, S. L., Beresnevich, V. I. (1987). A. s. 1351696 A SSSR, MPK B 06 B 1/14. Sposob nastrojki na rezonansnye kolebanija vibromashiny s kusochno-linejnoj harakteristikoj uprugij svjazej. 3910845/24-28; declarated: 17.06.85; published: 15.11.87, Bul. 42, 6.
  2. Zakrzhevskij, M. V., Ivanov, Ju. M. (1992). A. s. 1727928 A1 SSSR, MPK B 06 B 1/14. Sposob nastrojki na zadannyj rezhim kolebanij vibromashiny s nelinejnymi uprugimi svjazjami i s rabochej massoj. 4802571/28; declarated: 14.03.90; published: 23.04.92, Bul. 15, 3.
  3. Zakrzhevskij, M. V., Ivanov, Ju. M. (1991). A. s. 1634335 A2 SSSR, MPK B 06 B 1/14. Vibracionnoe ustrojstvo. 4485697/28; declarated: 23.09.88; published: 15.03.91, Bul. 10, 3.
  4. Cyfanskij, S. L., Beresnevich, V. I., Magone, M. A., Oks, A. B. (1988). A. s. 1381282 A1 SSSR, MPK F 16 F 13/00. Uprugaja podveska. 4057414/25-28; declarated: 18.04.86; published: 15.03.88, Bul. 10, 4.
  5. Michalczyk, J. (1995). Maszyny wibracyjne. Obliczenia dynamiczne, drgania, hałas. WNT, Warszawa.
  6. Moon, S.-I., Cho, I.-J., Yoon, D. (2011). Fatigue life evaluation of mechanical components using vibration fatigue analysis technique. Journal of Mechanical Science and Technology, 25 (3), 631–637. doi: 10.1007/s12206-011-0124-6
  7. Chu, S., Cao, D., Sun, S., Pan, J., Wang, L. (2013). Impact vibration characteristics of a shrouded blade with asymmetric gaps under wake flow excitations. Nonlinear Dynamics, 72 (3), 539–554. doi: 10.1007/s11071-012-0732-4
  8. Elmegård, M., Krauskopf, B., Osinga, H. M., Starke, J., Thomsen, J. J. (2014). Bifurcation analysis of a smoothed model of a forced impacting beam and comparison with an experiment. Nonlinear Dynamics, 77 (3), 951–966. doi: 10.1007/s11071-014-1353-x
  9. Aguiar, R. R., Weber, H. I. (2012). Impact Force Magnitude Analysis of an Impact Pendulum Suspended in a Vibrating Structure. Shock and Vibration, 19 (6), 1359–1372. doi: 10.1155/2012/641781
  10. Park, N.-G., Suh, J.-M., Jeon, K.-L. (2011). Contact force model for a beam with discretely spaced gap supports and its approximated solution. Nuclear Engineering and Technology, 43 (5), 447–458. doi: 10.5516/net.2011.43.5.447
  11. Van de Wouw, N., de Kraker, A., van Campen, D. H., Nijmeijer, H. (2003). Non-linear dynamics of a stochastically excited beam system with impact. International Journal of Non-Linear Mechanics, 38 (5), 767–779. doi: 10.1016/s0020-7462(01)00132-9
  12. Clough, R. W., Penzien, J. (1995). Dynamics of Structures. Berkeley: Computers & Structures.
  13. Hutton, D. V. (2004). Fundamentals of finite element analysis. Editorial McGraw-Hill, USA.
  14. Pisarenko, G. S., Yakovlev, A. P., Matveev, V. V. (1988). Spravochnik po soprotivleniyu materialov. 2nd edition. Kyiv: Nauk. Dumka, 736.
  15. Shigley, J. E. (2011). Shigley's mechanical engineering design. Tata McGraw-Hill Education.
  16. Gursky, V., Kuzio, I. (2016). Strength Analysis of Flat Spring of the Resonant Vibro-Impact Module. Mechanics, Materials Sciences & Engineering Journal, 5, 34–48.
  17. Manson, S. S., Halford, Gary R. (2006). Fatigue and Durability of Structural Materials. ASM International.
  18. Troschenko, V. T. (1978). Prochnost metallov pri peremennyih zagruzkah. Kyiv: Naukova dumka, 174.

Downloads

Published

2016-10-31

How to Cite

Gursky, V., & Kuzio, I. (2016). Strength and durability analysis of a flat spring at vibro-impact loadings. Eastern-European Journal of Enterprise Technologies, 5(7 (83), 4–10. https://doi.org/10.15587/1729-4061.2016.79910

Issue

Section

Applied mechanics