Obtaining anisotropic hexaferrites for the base layers of microstrip shf devices by the radiation-thermal sintering

Authors

  • Vladimir Kostishyn National Research Technological University " MISiS " Leninskiy ave., 4, Moscow, Russia, 119049, Russian Federation https://orcid.org/0000-0001-5384-6331
  • Igor Isaev National Research Technological University " MISiS " Leninskiy ave., 4, Moscow, Russia, 119049, Russian Federation
  • Sergey Shcherbakov JSC “RPC “ISTOK” named after Shokin” Vokzalnaya str., 2A, Fryazino, Russia, 141190, Russian Federation
  • Alexey Nalogin JSC “RPC Shokin “ISTOK”” Vokzalnaya str., 2A, Fryazino, Russia, 141190, Russian Federation
  • Eugene Belokon National Research Technological University " MISiS " Leninskiy ave., 4, Moscow, Russia, 119049 JSC “RPC Shokin “ISTOK”” Vokzalnaya str., 2A, Fryazino, Russia, 141190, Russian Federation
  • Alexander Bryazgin Institute of Nuclear Physics Akademika Lavrentieva ave., 11, Novosibirsk, Russia, 630090, Russian Federation

DOI:

https://doi.org/10.15587/1729-4061.2016.80070

Keywords:

hexagonal ferrite, radiation­thermal sintering, pressing, magnetic field, texture

Abstract

The technology of obtaining anisotropic polycrystalline hexagonal ferrites by the thermal radiation sintering is developed. Using the thermal radiation sintering, we obtained the samples of anisotropic polycrystalline hexaferrites BaFe12O19, BaFe12–х AlхO19 (with the Ni, Ti, Mn additives), SrFe12O19 and SrFe12–хAlхO19 (with the Ca, Si additives) for the base layers of the microstrip ferrite untying instruments of the short­wave part of the millimeter wavelength range. The essence of the RTS technology is the obtaining, by the method of classical ceramic technology, by pressing in the strong magnetic field, of raw billets with their consequent sintering in the beam of fast electrons. The use of different compositions and alloying additives makes it possible to control the electromagnetic and magnetic properties of hexaferrites.

The advantages of the RTS technology consist in high energy efficiency, high values of operating characteristics of the obtained material and low duration of the process of sintering.

It was established that the RTS technology may prove to be an alternative technology when obtaining the high­quality polycrystalline hexaferrites M of elementary and complex substituted compositions.

Owing to the low energy­ and time costs, high values of the performance parameters, the RTS technology of anisotropic hexaferrites may find wide application when obtaining permanent anisotropic magnets and various miniature SHF­devices.

Author Biographies

Vladimir Kostishyn, National Research Technological University " MISiS " Leninskiy ave., 4, Moscow, Russia, 119049

Doctor of Physical and Mathematical Sciences, Professor, Head of Department

Department of Technology for Electronic Materials

Igor Isaev, National Research Technological University " MISiS " Leninskiy ave., 4, Moscow, Russia, 119049

Engineer

Department of Technology for Electronic Materials

Sergey Shcherbakov, JSC “RPC “ISTOK” named after Shokin” Vokzalnaya str., 2A, Fryazino, Russia, 141190

Deputy General Director

Alexey Nalogin, JSC “RPC Shokin “ISTOK”” Vokzalnaya str., 2A, Fryazino, Russia, 141190

Head of NPK-9

Eugene Belokon, National Research Technological University " MISiS " Leninskiy ave., 4, Moscow, Russia, 119049 JSC “RPC Shokin “ISTOK”” Vokzalnaya str., 2A, Fryazino, Russia, 141190

Postgraduate student, Engineer

Department of Technology for Electronic Materials

Alexander Bryazgin, Institute of Nuclear Physics Akademika Lavrentieva ave., 11, Novosibirsk, Russia, 630090

PhD, Head of Laboratory

References

  1. Kostishyn, V. G., Panina, L. V., Timofeev, А. V., Kozhitov, L. V., Kovalev, A. N., Zyuzin, A. K. (2016). Dual ferroic properties of hexagonal ferrite ceramics BaFe12O19 and SrFe12O19. Journal of Magnetism and Magnetic Materials, 400, 327–332. doi: 10.1016/j.jmmm.2015.09.011
  2. Surzhikov, A. P., Pritulov, A. M. (1998). Radiatsionno–termicheskoe spekanie ferritovoi keramiki. Moscow: Energoatomizdat, 217.
  3. Collomb, A., Wolfers, P., Obradors, X. (1986). Neutron diffraction studies of some hexagonal ferrites: BaFe12O19, BaMg2∙W and BaCo2∙W. Journal of Magnetism and Magnetic Materials, 62 (1), 57–67. doi: 10.1016/0304-8853(86)90734-1
  4. Taguchi, H., Takeishi, T., Suwa, K., Masuzawa, K., Minachi, Y. (1997). High Energy Ferrite Magnets. Le Journal de Physique IV, 07 (C1), C1–311–C1–312. doi: 10.1051/jp4:19971122
  5. Kostishin, V. G., Korovushkin, V. V., Panina, L. V., Andreev, V. G., Komlev, A. S., Yudanov, N. A. et. al. (2014). Magnitnaya struktura i svoistva MnZn–ferritov, poluchennykh metodom radiatsionno–termicheskogo spekaniya. Neorganicheskie materialy, 50 (12), 1352–1356.
  6. Kostishin, V. G., Andreev, V. G., Korovushkin, V. V., Chitanov, D. N., Yudanov, N. A., Morchenko, A. T. et. al. (2014). Poluchenie ferritovoi keramiki marki 2000NN metodom radiatsionno–termicheskogo spekaniya po polnoi i korotkoi tekhnologicheskim skhemam. Neorganicheskie materialy, 50 (12), 1387–1392.
  7. Sattar, A. A., El-Sayed, H. M., Agami, W. R. (2007). Physical and Magnetic Properties of Calcium-Substituted Li-Zn Ferrite. Journal of Materials Engineering and Performance, 16 (5), 573–577. doi: 10.1007/s11665-007-9080-9
  8. Surzhikov, A. P., Pritulov, A. M., Lysenko, E. N., Sokolovskii, A. N., Vlasov, V. A., Vasendina, E. A. (2011). Dependence of lithium–zinc ferrospinel phase composition on the duration of synthesis in an accelerated electron beam. Journal of Thermal Analysis and Calorimetry, 110 (2), 733–738. doi: 10.1007/s10973-011-1947-1
  9. Ghasemi, A., Morisako, A., Liu, X. (2008). Magnetic properties of hexagonal strontium ferrite thick film synthesized by sol–gel processing using SrM nanoparticles. Journal of Magnetism and Magnetic Materials, 320 (18), 2300–2304. doi: 10.1016/j.jmmm.2008.04.156
  10. Ghasemi, A., Sepelak, V., Xiaoxi Liu, Morisako, A. (2009). Microwave Absorption Properties of Mn–Co–Sn Doped Barium Ferrite Nanoparticles. IEEE Transactions on Magnetics, 45(6), 2456–2459. doi: 10.1109/tmag.2009.2018611
  11. Cook, W., Manley, M. (2010). Raman characterization of α- and β-LiFe5O8 prepared through a solid-state reaction pathway. Journal of Solid State Chemistry, 183 (2), 322–326. doi: 10.1016/j.jssc.2009.11.011
  12. An, S. Y., Shim, I.-B., Kim, C. S. (2005). Synthesis and magnetic properties of LiFe5O8 powders by a sol–gel process. Journal of Magnetism and Magnetic Materials, 290-291, 1551–1554. doi: 10.1016/j.jmmm.2004.11.244
  13. Letyuk, L. M., Kostishin, V. G., Gonchar, A. V. (2005). Tekhnologiya ferritovykh materialov magnitoelektroniki. Moscow: MISiS, 351.

Downloads

Published

2016-10-30

How to Cite

Kostishyn, V., Isaev, I., Shcherbakov, S., Nalogin, A., Belokon, E., & Bryazgin, A. (2016). Obtaining anisotropic hexaferrites for the base layers of microstrip shf devices by the radiation-thermal sintering. Eastern-European Journal of Enterprise Technologies, 5(8 (83), 32–39. https://doi.org/10.15587/1729-4061.2016.80070

Issue

Section

Energy-saving technologies and equipment