Improving the process of driving a locomotive through the use of decision support systems

Authors

DOI:

https://doi.org/10.15587/1729-4061.2016.80198

Keywords:

driving a locomotive, decision making, intelligent system, knowledge base, fuzzy classifier

Abstract

The process of driving a train was represented in the form of fuzzy situations, given in a table. The conformity between all possible situations and a set of driving decisions was established. The table size is determined by the number of situations which, in turn, depends on the degree of concretization of values. An algorithm of actions of a locomotive driver when driving a train is presented in the form of fuzzy probabilistic graph. Fuzzy numbers, the values of which are recorded in the matrix graph, represent the weights of transitions between vertices. The choice of decision by a locomotive decision support system (DSS) is carried out using the utility criterion. The training system is implemented with the use of the fuzzy classifier that represents fuzzy knowledge base, the input of which receives signals about current state of the traction rolling stock and of the environment. The model of dynamic knowledge base was obtained.

As a result of analysis of existing types of intelligent systems, hierarchies, and algorithms of their work, taking into account the working conditions of locomotive crews and railway transport as a whole, the parameters for locomotive DSS were developed. We defined the minimal time it takes for a locomotive driver to make a decision about driving a train and to identify emergency situations. The functions of person that directly affect the efficiency and safety of the locomotive and require support using the intelligent systems were determined. The results of the work allow implementing intelligent DSS in modern locomotives. This will enhance the level of safety and efficiency of driving a train.

Author Biographies

Eduard Tartakovskyi, Ukraine State University of Railway Transport Feuerbach sq., 7, Kharkiv, Ukraine, 61050

Doctor of Technical Sciences, Professor

Department of «Maintenance and repair of rolling stock»

Oleksandr Gorobchenko, Ukraine State University of Railway Transport Feuerbach sq., 7, Kharkiv, Ukraine, 61050

Doctor of Technical Sciences, Associate Professor

Department of «Maintenance and repair of rolling stock»

Artem Antonovych, Ukraine State University of Railway Transport Feuerbach sq., 7, Kharkiv, Ukraine, 61050

Postgraduate student

Department of «Maintenance and repair of rolling stock»

References

  1. Railway safety statistics (2015). Eurostat. Statistics Explained. Available at: http://ec.europa.eu/eurostat/statistics-explained/index.php/Railway_safety_statistics (Last accessed: 02.02.2016).
  2. Volkovskiy, D. (2013). Systems of automatic driving of trains and traffic safety. Evraziya Vesti XII. Available at: http://www.eav.ru/publ1.php?publid=2013-12a15 (Last accessed: 10.12.2015).
  3. Conventional Automatic Train Protection (ATP) (2015). Siemens AG. Available at: http://www.mobility.siemens.com/mobility/global/en/urban-mobility/rail-solutions/rail-automation/automatic-train-control-system/conventional-automatic-train-protection-atp/pages/conventional-automatic-train-protection-atp.aspx (Last accessed: 23.12.2015).
  4. A new generation for driverless automated transit systems (2016). Bombardier Inc. Available at: http://www.bombardier.com/en/transportation/products-services/rail-control-solutions/mass-transit-solutions/cityflo-650.html (Last accessed: 24.12.2015).
  5. Alstom to supply automatic train control system to Santiago de Chile metro’s line 1 (2012). ALSTOM. Available at: http://www.alstom.com/press-centre/2010/1/Alstom-to-supply-automatic-train-control-system-to-Santiago-de-Chile-metros-line-1-20100120 (Last accessed: 10.12.2015).
  6. Wang, Z. (2005). Study on the structure design and optimization for RITS. China Academic of Railway, 13, 89.
  7. Yan, M. (2006). Study on the structure design for RITS. China Academic of Railway, 11, 166.
  8. Fomin, O. V. (2015). Increase of the freight wagons ideality degree and prognostication of their evolution stages. Scientific Bulletin of National Mining University, 2, 68–76.
  9. Goswami, S., Mehjabin, S., Kashyap, P. A. (n.d.). Driverless Metro Train with Automatic Crowd Control System. Intelligent Applications for Heterogeneous System Modeling and Design, 76–95. doi: 10.4018/978-1-4666-8493-5.ch004
  10. Potekhin, A. I., Branishtov, S. A., Kuznetsov, S. K. (2014). Supervisory control of the railway system based on Petri nets. XII all-Russia meeting on control problems VCPU-2014, 4956–4965.
  11. El-Fakih, K., Simao, A., Jadoon, N., Maldonado, J. C. (2016). An Assessment of Extended Finite State Machine Test Selection Criteria. Journal of Systems and Software. doi: 10.1016/j.jss.2016.09.044
  12. Sales, D. O., Correa, D. O., Fernandes, L. C., Wolf, D. F., Osório, F. S. (2014). Adaptive finite state machine based visual autonomous navigation system. Engineering Applications of Artificial Intelligence, 29, 152–162. doi: 10.1016/j.engappai.2013.12.006
  13. Hahanov, V., Kaminska, M., Fomina, E. (2006). Testability Analysis of Digital Design Verification. 2006 International Biennial Baltic Electronics Conference, 171–175. doi: 10.1109/bec.2006.311090
  14. Filippenko, I. G. (2015). Vzaimodeystvuyuschie neyroavtomatyi i neyroavtomatno-vyichislitelnyie strukturyi [Interactive neuroantomy and nanoautomation-computational structures]. Kyiv, Ukraine: Caravel, 440.
  15. Tarasov, V. A., Gerasimov, B. M., Levin, I. A., Korneychuk, V. A. (2007). Intellektualnie systemi podderzhki prinyatiya resheniy: teoriya, sintez, effektivnost [Intelligent Decision Support Systems: theory, synthesis efficiency]. Kyiv: MAKNS, 336.
  16. But'ko, T. V., Gorobchenko, O. M. (2015). Modelyuvannya keruyuchoyi diyalnosti mashunista locomotiva za dopomogoyu teorii nechitkih grafiv[Modeling the management of locomotive driver with the help of fuzzy graphs]. Visnuk DNUZT, 2, 88–96.
  17. Bishop, C. M. (2006). Pattern Recognition and Machine Learning. New York, USA: Springer, 738.
  18. Theodoridis, S., Koutroumbas, K. (2006). Pattern Recognition. 3rd edition. London, UK: Academic Press, 631.
  19. Demin, D. A. (2013). Nechetkaya klasterizaciya v zadache postroeniy modeley «sostav-svoystvo» po dannim passivnogo experimenta v usloviyah neopredelennosti [Fuzzy Clustering in the problem of model building «structure - property» according to the passive experiment in conditions of uncertainty]. Problemy mashinostroeniya, 15–23.
  20. Melyhov, A. N., Bershteyn, L. S., Korovin, S. Ya. (1990). Situacionnie sovetueschiye systemi s nechetkoy logikoy [Situational council system with fuzzy logic]. Moscow, Russia: Gl. Red. Fiz. Mat. Lyt., 272.
  21. Rottshteyn, A. P., Shtovba, C. D. (1997). Nechetkaya nadezhnost algorytmycheskyh processov [Fuzzy reliability of algorithmic processes]. Vinnytsa: Contynent, 142.
  22. Gorobchenko, O. M. (2010). Vyznachennya imovirnosti vynyknennya transportnoyi podii v locomotyvnomu gospodarstvi [Determining the potential traffic accident in the locomotive sector]. DNUZT, 35, 48–51.
  23. Madsen, A. L., Kjaerulff, U. B., Kalwa J. (2005). Applications of Probabilistic Graphical Models to Diagnosis and Control of Autonomous Vehicles. The Second Bayesian Modeling Applications Workshop, 12.
  24. Raskyn, L. G., Seraya, O. V. (2008). Nechetkaya matematyka. [Fuzzy Math]. Kharkiv: Parus, 352.
  25. Olkkonen, E. A. (1997). Modeli predstavleniya znaniy v yazikovyh intelektualnyh obuchayuchih systemah [Models of knowledge representation language in intelligent tutoring systems]. Works of PGU, 6, 168–182.
  26. Gorobchenko, O. M. (2011). Korreguvannya funkcii mashinista locomotyva za dopomogoyu system pidtrimki priynyatih rishenn’ [Editing functions locomotive driver using decision support systems]. Locomotiv-inform, 5, 4–5.
  27. Shtovba, S. D. (2007). Proektirovaniye nechetkyh system sredstvamy MATLAB [Design of fuzzy systems MATLAB tools]. Moscow: Goryachaya linia, 288.
  28. Gorobchenko, O. M. (2013). Rozrobka matematichnoi modeli dynamichnoi bazi znan’ dlya intelektualnogo keruvannya locomotyvom [Development of a mathematical model of dynamic knowledge bases for intelligent management engine]. Zbirnyk naukovyh praz DIZT, 33, 189–192.

Downloads

Published

2016-10-30

How to Cite

Tartakovskyi, E., Gorobchenko, O., & Antonovych, A. (2016). Improving the process of driving a locomotive through the use of decision support systems. Eastern-European Journal of Enterprise Technologies, 5(3 (83), 4–11. https://doi.org/10.15587/1729-4061.2016.80198

Issue

Section

Control processes