Applying the ltcc-technology to obtain hexaferrites for base layers of microstrip shf devices

Authors

  • Denis Chitanov National University of Science and Technology MISiS Leninskiy ave., 4, Moscow, Russia, 119049, Russian Federation https://orcid.org/0000-0002-1102-9090
  • Vladimir Kostishyn National University of Science and Technology MISiS Leninskiy ave., 4, Moscow, Russia, 119049, Russian Federation https://orcid.org/0000-0001-5384-6331
  • Lev Kozhitov National University of Science and Technology MISiS Leninskiy ave., 4, Moscow, Russia, 119049, Russian Federation https://orcid.org/0000-0002-4973-1328
  • Artem Adamtsov National University of Science and Technology MISiS Leninskiy ave., 4, Moscow, Russia, 119049, Russian Federation

DOI:

https://doi.org/10.15587/1729-4061.2016.80646

Keywords:

hexagonal ferrite, LTCC-technology, microstructure, reaction glasses, density

Abstract

By the method of low-temperature co-fired ceramics (LTCC), with the addition of a small amount of reaction glasses with the composition Bi2O3–B2O3–SiO2–ZnO (BBSZ), we obtained the samples of isotropic and anisotropic polycrystalline hexaferrites BaFe12O19 and SrFe12O19 for the base layers of the subminiature microstrip ferrite untying instruments of the short–wave part of the millimeter wavelength ranges.

The LTCC-technology makes it possible to simultaneously achieve compaction of the samples below 900 °C using the process of sintering of hexaferrites with the addition of a small amount of reaction glasses, which are based on Bi–B–Zn–Si–О (BBSZ).

It was established that the use in the LTCC-technology of operation of pressing the samples (tablets) in the magnetic field makes it possible to obtain anisotropic hexaferrites, pressing without magnetic field – isotropic hexaferrites. The application in the LTCC-technology of the method of casting a tape allows obtaining entirely isotropic samples.

Development of the technology of low-temperature co-fired ceramics, which consists of alternating ferrites and internal metal electrodes, is relevant in the production of miniature SHF-devices.

Author Biographies

Denis Chitanov, National University of Science and Technology MISiS Leninskiy ave., 4, Moscow, Russia, 119049

PhD, Head of Laboratory

Department of Technology for Electronic Materials

Vladimir Kostishyn, National University of Science and Technology MISiS Leninskiy ave., 4, Moscow, Russia, 119049

Doctor of Physical and Mathematical Sciences, Professor, Head of Department

Department of Technology for Electronic Materials

Lev Kozhitov, National University of Science and Technology MISiS Leninskiy ave., 4, Moscow, Russia, 119049

Doctor of Technical Sciences, Professor

Department of Technology for Electronic Materials

Artem Adamtsov, National University of Science and Technology MISiS Leninskiy ave., 4, Moscow, Russia, 119049

Postgraduate student, Engineer

Department of Technology for Electronic Materials

References

  1. Chen, D., Liu, Y., Li, Y., Zhong, W., Zhang, H. (2012). Low-temperature sintering of M-type barium ferrite with BaCu(B2O5) additive. Journal of Magnetism and Magnetic Materials, 324 (4), 449–452. doi: 10.1016/j.jmmm.2011.08.016
  2. Park, J., Hong, S. H., Choa, Y., Kim, J. (2004). Fabrication and magnetic properties of LTCC NiZnCu ferrite thick films. Physica Status Solidi (a), 201 (8), 1790–1793. doi: 10.1002/pssa.200304625
  3. Antsiferov, V. N., Letyuk, L. M., Andreev, V. G., Dubrov, A. N., Gonchar, A. V., Kostishin, V. G., Satin, A. I. (2004). Problemy poroshkovogo materialovedeniya. Ch IV. Materialovedenie polikristallicheskikh ferritov. Ekaterinburg: Uro RAN, 395.
  4. Letyuk, L. M., Kostishin, V. G., Gonchar, A. V. (2005). Tekhnologiya ferritovykh materialov magnitoelektroniki. Moscow: MISiS, 352.
  5. Hsu, F.-C., Jantunen, H., Hsi, C.-S., Hsiang, H.-I., Yang, M.-Y., Chang, C.-W. (2015). Multilayer low temperature co-fired M-type barium hexaferrites and BaO·(Nd1−xBix)2O3·4TiO2 dielectric ceramics. Ceramics International, 41 (9), 12401–12406. doi: 10.1016/j.ceramint.2015.06.076
  6. Hsiang, H.-I., Liao, W.-C., Wang, Y.-J., Cheng, Y.-F. (2004). Interfacial reaction of TiO2/NiCuZn ferrites in multilayer composites. Journal of the European Ceramic Society, 24 (7), 2015–2021. doi: 10.1016/s0955-2219(03)00368-6
  7. Jean, J.-H., Chang, C.-R. (2005). Cofiring Kinetics and Mechanisms of an Ag-Metallized Ceramic-Filled Glass Electronic Package. Journal of the American Ceramic Society, 80 (12), 3084–3092. doi: 10.1111/j.1151-2916.1997.tb03236.x
  8. Oechsner, M., Hillman, C., Lange, F. F. (1996). Crack Bifurcation in Laminar Ceramic Composites. Journal of the American Ceramic Society, 79 (7), 1834–1838. doi: 10.1111/j.1151-2916.1996.tb08003.x
  9. Hsu, J. Y., Lin, H. C., Shen, H. D., Chen, C.-J. (1997). High frequency multilayer chip inductors. IEEE Transactions on Magnetics, 33 (5), 3325–3327. doi: 10.1109/20.617932
  10. Hsiang, H.-I., Mei, L.-T., Hsi, C.-S., Wu, W.-C., Wu, J.-H., Yen, F.-S. (2012). Glass Additive Influence on the Sintering Behaviors, Magnetic and Electric Properties of Bi-Zn Co-Doped Co2Y Ferrites. International Journal of Applied Ceramic Technology, 10 (1), 160–167. doi: 10.1111/j.1744-7402.2011.02721.x
  11. Autissier, D., Podembski, A., Jacquiod, C. (1997). Microwaves Properties of M and Z Type Hexaferrites. Le Journal de Physique IV, 07 (C1), C1–409–C1–412. doi: 10.1051/jp4:19971165
  12. Bierlich, S., Topfer, J. (2012). Low-Temperature Firing of Substituted M-Type Hexagonal Ferrites for Multilayer Inductors. IEEE Transactions on Magnetics, 48 (4), 1556–1559. doi: 10.1109/tmag.2011.2172682
  13. Kim, M.-H., Lim, J.-B., Kim, J.-C., Nahm, S., Paik, J.-H., Kim, J.-H., Park, K.-S. (2006). Synthesis of BaCu(B2O5) Ceramics and their Effect on the Sintering Temperature and Microwave Dielectric Properties of Ba(Zn1/3Nb2/3)O3Ceramics. Journal of the American Ceramic Society, 89 (10), 3124–3128. doi: 10.1111/j.1551-2916.2006.01157.x
  14. Zhou, H., Wang, H., Li, K., Yang, H., Zhang, M., Yao, X. (2009). Microwave Dielectric Properties of ZnO-2TiO2-Nb2O5 Ceramics with BaCu (B2O5) Addition. Journal of Electronic Materials, 38 (5), 711–716. doi: 10.1007/s11664-009-0721-7

Downloads

Published

2016-10-30

How to Cite

Chitanov, D., Kostishyn, V., Kozhitov, L., & Adamtsov, A. (2016). Applying the ltcc-technology to obtain hexaferrites for base layers of microstrip shf devices. Eastern-European Journal of Enterprise Technologies, 5(1 (83), 27–31. https://doi.org/10.15587/1729-4061.2016.80646

Issue

Section

Engineering technological systems