Development of PPP-method realization for low earth orbit satellite trajectory determination using on-board gps-observations

Authors

  • Alexey Zhalilo Research Division of Kharkiv National University of Radio Electronics Nauky ave., 14, Kharkiv, Ukraine, 61166, Ukraine https://orcid.org/0000-0002-6735-9662
  • Aleksander Yakovchenko Kharkiv National University of Radio Electronics Nauky ave., 14, Kharkiv, Ukraine, 61166, Ukraine

DOI:

https://doi.org/10.15587/1729-4061.2016.81026

Keywords:

global navigation satellite system (GPS), code and carrier–phase observations, Precise Point Positioning (PPP) method

Abstract

The results of development and testing of new PPP-method realization (Precise Point Positioning) for high-precision determination of Low Earth Orbit satellites (LEOS) trajectory parameters using the results of on-board GPS-observations and kinematic (geometric) positioning mode are presented. The peculiarities and features of the proposed variant of the PPP–method of GPS-observation processing with using of precise ephemerides and  GPS satellites clocks as well as other information from the international IGS service and the French space agency CNES are described. The components of the observation error model and the results of “a priori” and “a posteriori” accuracy estimation of coordinate determinations are described. Using the example of on-board GPS-observations processing from specialized LEOS COSMIC it is indicated that for observation intervals of 30–40 minutes and more sub-decimeter accuracy of LEOS positioning may be achieved. The results of comparison of convergence of “float” and discrete/integer (“fixed”) methods of carrier-phase ambiguity resolution are presented. The presented development may be used for high-precision positioning and timing support of modern satellite technologies to detect contaminants, erosion studies, support of scientific and applied projects in geodesy, geophysics, climatology, orbitography, meteorology. The research results may be used in solving the problems of the LEOS maneuvering and docking. 

Author Biographies

Alexey Zhalilo, Research Division of Kharkiv National University of Radio Electronics Nauky ave., 14, Kharkiv, Ukraine, 61166

PhD, Senior Researcher, Leading Researcher

Aleksander Yakovchenko, Kharkiv National University of Radio Electronics Nauky ave., 14, Kharkiv, Ukraine, 61166

Postgraduate student

Department of Radio Engineering Fundamentals

References

  1. Bisnath, S., Gao, Y. (2008). Current State of Precise Point Positioning and Future Prospects and Limitations. Observing Our Changing Earth, 615–623. doi: 10.1007/978-3-540-85426-5_71
  2. Kouba, J. (2009). A guide to using International GNSS service (IGS) products, 35. Available at: http://acc.igs.org/UsingIGSProductsVer21.pdf
  3. Rizos, C., Janssen, V., Roberts, C., Grinter, T. (2012). PPP versus DGNSS. Geomatics World, 18–20.
  4. Zasuhi, S. A., Fyodorova O. P. (Eds.) (2013). Kosmicheskiy proekt «Ionosat-Mikro». Kyiv: Akademperiodika, 218.
  5. Martín, A., Anquela, A. B., Capilla, R., Berné, J. L. (2011). PPP Technique Analysis Based on Time Convergence, Repeatability, IGS Products, Different Software Processing, and GPS+GLONASS Constellation. Journal of Surveying Engineering, 137 (3), 99–108. doi: 10.1061/(asce)su.1943-5428.0000047
  6. Banville, S., Santerre, R., Cocard, M., Langley, R. B. (2008). Satellite and Receiver Phase Bias Calibration for Un-differenced Ambiguity Resolution Proceedings of the 2008 National Technical Meeting of The Institute of Navigation, 711–719.
  7. Huber, K., Heuberger, F., Abart, C., Karabatic, A., Weber, R., Berglez, P. (2010). Precise Point Positioning – Constraints and Opportunities. FIG Congress 2010, 17.
  8. Chen, W., Hu, C., Gao, S., Chen, Y., Ding, X. (2009). Error correction models and their effects on gps precise point positioning. Survey Review, 41 (313), 238–252. doi: 10.1179/003962609x390139
  9. Yakovchenko, A. I. (2012). Osnovnyie istochniki i sostavlyayuschie pogreshnostey GNSS-nablyudeniy i ih modelirovanie pri realizatsii metoda tochnogo pozitsionirovaniya PPP. Radiotehnika, 169, 315–330.
  10. Collins, P., Bisnath, S., Lahaye, F., Héroux, P. (2010). Undifferenced GPS Ambiguity Resolution Using the Decoupled Clock Model and Ambiguity Datum Fixing. Navigation, 57 (2), 123–135. doi: 10.1002/j.2161-4296.2010.tb01772.x
  11. Shi, J., Gao, Y. (2010). Analysis of The Integer Property of Ambiguity And Characteristics of Code and Phase Clocks in PPP Using A Decoupled Clock Model. Proceedings of ION/GNSS 2010, 2553–2564.
  12. Bisnath, S., Collins, P. (2012). Recent Developments in Precise Point Positioning. Geomatica, 66 (2), 103–111. doi: 10.5623/cig2012-023
  13. Laurichesse, D., Mercier, F., Berthias, J.-P., Broca, P., Cerri, L. (2009). Integer Ambiguity Resolution on Undifferenced GPS Phase Measurements and Its Application to PPP and Satellite Precise Orbit Determination. Navigation, 56 (2), 135–149. doi: 10.1002/j.2161-4296.2009.tb01750.x
  14. Hwang, C., Tseng, T.-P., Lin, T.-J., Švehla, D., Hugentobler, U., Chao, B. F. (2009). Quality assessment of FORMOSAT-3/COSMIC and GRACE GPS observables: analysis of multipath, ionospheric delay and phase residual in orbit determination. GPS Solutions, 14 (1), 121–131. doi: 10.1007/s10291-009-0145-0
  15. Zhalilo, A. A., Ditskiy, I. V. (2011). Novyiy effektivnyiy metod ustraneniya tsiklicheskih fazovyih skachkov dvuhchastotnyih kinematicheskih GNSS-nablyudeniy. Izvestiya vuzov. Radioelektronika, 54 (8), 18–28.
  16. Zhalilo, A. A. (2012). Razrabotka i testirovanie novyih effektivnyih metodov i algoritmov obnaruzheniya i ustraneniya fazovyih skachkov staticheskih i kinematicheskih GNSS-nablyudeniy. Radiotehnika, 171, 340–371.
  17. Zhelanov, A. A. (2009). Algoritm i protsedura verifikatsii otsenki tselochislennyih neodnoznachnostey fazovyih GPS nablyudeniy raznostnoy. Radiotehnika, 158, 43–52.
  18. Zhalilo, A. A., Ditskiy, I. V. (2012). Usovershenstvovannyiy metod razresheniya fazovoy neodnoznachnosti dvuhchastotnyih differentsialnyih fazovyih GNSS-nablyudeniy. Radiotehnika, 169, 277–301.
  19. Ditskiy, I. V. (2014). Razreshenie fazovoy neodnoznachnosti dvuhchastotnyih differentsialnyih fazovyih GNSS-nablyudeniy i vyisokotochnoe pozitsionirovanie na bazovyih udaleniyah do1000 km. Radiotehnika, 179, 99–106.
  20. Xu, G. (2007). GPS. Theory, Algorithms and Applications. Springer-Verlag, 340. doi: 10.1007/978-3-540-72715-6
  21. Zhalilo, A., Shelkovenkov, D. (2007). Features and service performance of multifunctional software toolkit “OCTAVA” for processing and analysis of GPS/GNSS observations. GEOS 2007 Conference Proceedings, 102–110.
  22. Zhalilo, A. A., Ditskiy, I. V., Bessonov, E. A., Zhelanov, A. A. (2014). Osnovnyie rezultatyi razrabotok HNURE v oblasti vyisokotochnogo GNSS-pozitsionirovaniya. Prikladnaya radioelektronika, 1, Part 2, 62–65.

Downloads

Published

2016-10-30

How to Cite

Zhalilo, A., & Yakovchenko, A. (2016). Development of PPP-method realization for low earth orbit satellite trajectory determination using on-board gps-observations. Eastern-European Journal of Enterprise Technologies, 5(9 (83), 33–40. https://doi.org/10.15587/1729-4061.2016.81026

Issue

Section

Information and controlling system