Method of solving fuzzy problems of mathematical programming

Authors

DOI:

https://doi.org/10.15587/1729-4061.2016.81292

Keywords:

problems of mathematical programming, fuzzy parameters, method of solution, complex criterion, regularization

Abstract

A brief analysis of traditional methods of solving fuzzy problems of mathematical programming was carried out. The shortcomings of the known approaches, limiting their application for the problems of real dimensionality, were revealed. The solution of the problem is achieved with the use of a two–stage procedure. At the first stage, a usual optimization problem is solved, which is caused by the original problem with the replacement of fuzzy parameters with their modal values. In this case, standard technologies of solving the problems of mathematical programming are used. At the second stage, a distinct solution, which satisfies two special requirements, is searched for. First, this solution must minimally deviate from the modal, obtained at the first stage. Second, membership function of fuzzy value of the optimized function, corresponding to the solution, must have a minimum level of uncertainty. In this connection, a complex criterion, which contains two appropriate components, is formed for solving the problem. A parameter of regularization, which assigns the value of the weight coefficient, determining the value of components, is introduced into the proposed complex criterion. This regulating multiplier provides acceptable level of the ratio between contradictory requirements, corresponding to the components of the criterion. The proposed approach for solving the problem of mathematical programming with not clearly defined parameters has the following benefits. Complex criterion has a distinct meaning and the corresponding computational procedure is simple. The implementation of its first stage is ensured by a traditional set of tools of determined optimization. The problem of the second stage when using standard membership functions, as a rule, comes down to the problem of quadratic programming. The account of theoretical material of the work is accompanied by examples. 

Author Biographies

Lev Raskin, National Technical University «Kharkiv Polytechnic Institute» Bagalіya str., 21, Kharkov, Ukraine, 61002

Doctor of Technical Sciences, Professor, Head of Department

Department of Computer Monitoring and logistics

Oksana Sira, National Technical University «Kharkiv Polytechnic Institute» Bagalіya str., 21, Kharkov, Ukraine, 61002

Doctor of Technical Sciences, Professor

Department of Computer Monitoring and logistics

References

  1. Raskin, L. G. (1976). Analyz slozhnykh system i elementy teoryy upravlenyia. Moscow: Sov. radyo, 344.
  2. Larychev, O. Y. (2002). Teoryia y metody pryniatyia reshenyi. Moscow: Lohos, 392.
  3. Saaty, T. (1962). Mathematical methods of operation research. New York: McGrow-Hill Book Company, 419.
  4. Kostenko, Yu. T., Raskin, L. G. (1996). Prohnozyrovanye tekhnycheskoho sostoianyia system upravlenyia. Kharkiv: Osnova, 303.
  5. Zubarev, V. V., Kovtunenko, A. P., Raskin, L. G. (2005). Matematycheskye metody otsenky y prohnozyrovanyia tekhnycheskykh pokazatelei ekspluatatsyonnykh svoistv radyotekhnycheskykh system. Kyiv: NAU, 184.
  6. Raskin, L. G. (1988). Matematycheskye metody yssledovanyia operatsyi y analyza slozhnykh system vooruzhenyia PVO. Kharkiv: VYRTA, 177.
  7. Sira, O. V. (2010). Mnohomernye modely lohystyky v uslovyiakh neopredelennosty. Kharkiv: FOP Stetsenko Y. Y., 512.
  8. Rekleitys, H., Reivyndran, A., Rehsdel, K. (1989). Optymyzatsyia v tekhnyke. Moscow: MYR, 349.
  9. Karmanov, V. H. (1980). Matematycheskoye prohrammyrovanye. Moscow: Hl. red. fyz.-mat. lyt., 256.
  10. Himmelblau, D. (1972). Applied Nonlinear Programming. New York: McGraw-Hill, 498.
  11. Zangwill, W. I. (1969). Nonlinear Programmmg: A Unified Approach. PrenticeHall, Englewood Chffs, N. J., 356.
  12. Bazaraa, M. S., Shetty, C. M. (1979). Nonhnear Programming: Theory and Algorithms. New York: Wiley, 312.
  13. Yudyn, D. B. (1974). Matematycheskye metody upravlenyia v uslovyiakh nepolnoi ynformatsyy. Zadachy y metody stokhastycheskoho prohrammyrovanyia. Moscow: Sov. radyo, 392.
  14. Pyhnastyi, O. M. (2007). Stokhastycheskaia teoryia proyzvodstvennykh system. Kharkiv: KhNU ym. V. N. Karazyna, 387.
  15. Demutskyi, V. P. (2003). Teoryia predpryiatyia. Ustoichyvost funktsyonyrovanyia massovoho proyzvodstva y prodvyzhenyia produktsyy na rynok. Kharkiv: KhNU ym. V. N. Karazyna, 272.
  16. Raskin, L. G., Kyrychenko, Y. O., Sira, O. V. (2013). Prykladnoe kontynualnoe lyneinoe prohrammyrovanye. Kharkiv, 293.
  17. Raskin, L. G., Sira, O.V. (2008). Nechetkaia matematyka. Kharkiv: Parus, 352.
  18. Sira, O. V. (2001). Modely y ynformatsyonnye tekhnolohyy otsenky y prohnozyrovanyia sostoianyia mnohomernykh dynamycheskykh obektov v uslovyiakh nechetkykh vkhodnykh dannykh. Kharkiv, 252.
  19. Seraya, O. V., Demin, D. A. (2012). Linear Regression Analysis of a Small Sample of Fuzzy Input Data. Journal of Automation and Information Sciences, 44 (7), 34–48. doi: 10.1615/jautomatinfscien.v44.i7.40
  20. Bellman, R. E., Zadeh, L. A. (1970). Decision-Making in a Fuzzy Environment. Management Science, 17 (4), B–141–B–164. doi: 10.1287/mnsc.17.4.b141
  21. Nehoitse, K. (1981). Prymenenye teoryy system k problemam upravlenyia. Moscow: MYR, 219.
  22. Orlovskyi, S. A. (1981). Problemy pryniatyia reshenyi pry nechetkoi ynformatsyy. Moscow: Nauka, 264.
  23. Zaichenko, Yu. P. (1991). Yssledovanye operatsyi. Nechetkaia optymyzatsyia. Kyiv: Vyshcha shkola, 191.
  24. Szmidt, E., Kacprzyk, J. (2000). Distances between intuitionistic fuzzy sets. Fuzzy Sets and Systems, 114 (3), 505–518. doi: 10.1016/s0165-0114(98)00244-9
  25. Yang, M.-S., Lin, T.-S. (2002). Fuzzy least-squares linear regression analysis for fuzzy input–output data. Fuzzy Sets and Systems, 126 (3), 389–399. doi: 10.1016/s0165-0114(01)00066-5
  26. Ramík, J., Rommelfanger, H. (1996). Fuzzy mathematical programming based on some new inequality relations. Fuzzy Sets and Systems, 81(1), 77–87. doi: 10.1016/0165-0114(95)00241-3
  27. Baoding Liu, Yian-Kui Liu. (2002). Expected value of fuzzy variable and fuzzy expected value models. IEEE Transactions on Fuzzy Systems, 10 (4), 445–450. doi: 10.1109/tfuzz.2002.800692
  28. Zak, Yu. A. (2011). Determynyrovannyi ekvyvalent y alhorytmy reshenyia zadachy fuzzy – lyneinoho prohrammyrovanyia. Problemy upravlenyia y ynformatyky, 1, 87–101.

Downloads

Published

2016-10-30

How to Cite

Raskin, L., & Sira, O. (2016). Method of solving fuzzy problems of mathematical programming. Eastern-European Journal of Enterprise Technologies, 5(4 (83), 23–28. https://doi.org/10.15587/1729-4061.2016.81292

Issue

Section

Mathematics and Cybernetics - applied aspects