Thermoeconomic optimization of supercritical refrigeration system with the refrigerant R744 (CO2)

Authors

  • Mikhail Kuznetsov A. N. Podgorny Institute problem in machinery of National Academy of Sciences of Ukraine Pozharsky str., 2/10, Kharkiv, Ukraine, 61046, Ukraine https://orcid.org/0000-0002-5180-8830
  • Dionis Kharlampidi A. N. Podgorny Institute problem in machinery of National Academy of Sciences of Ukraine Pozharsky str., 2/10, Kharkiv, Ukraine, 61046, Ukraine https://orcid.org/0000-0003-4337-6238
  • Victoria Tarasova A. N. Podgorny Institute problem in machinery of National Academy of Sciences of Ukraine Pozharsky str., 2/10, Kharkiv, Ukraine, 61046, Ukraine https://orcid.org/0000-0003-3252-7619
  • Evgeniy Voytenko A. N. Podgorny Institute problem in machinery of National Academy of Sciences of Ukraine Pozharsky str., 2/10, Kharkiv, Ukraine, 61046, Ukraine

DOI:

https://doi.org/10.15587/1729-4061.2016.85397

Keywords:

thermoeconomic model, supercritical cycle, exergy, resulting expenses

Abstract

We developed a thermoeconomic model of refrigeration plant that works by the supercritical CO2 cycle as refrigerating medium. The model is built for the plant of the “air – air” type and makes it possible at the optimization of design and the selection of economical operating modes to simultaneously consider both thermodynamic and economic parameters. Resulting expenses for the creation and operation of the system over the projected life cycle were accepted as objective function for analysis of the model. The minimum of resulting expenses corresponds to the optimum system characteristics while maintaining amount and quality of produced cold. Development of the model allowed us to represent objective function in the form of expanded analytical expressions, which consider interrelation between all optimizing parameters of the system.

One of the benefits of the method consists in the fact that the obtained unique analytical solution in the form of a system of equations of partial derivatives from objective function of the resulting expenses is applicable for the thermoeconomic optimization of regime parameters of operation of any refrigeration system that works according to the examined scheme and with a similar type of equipment.

Numerical solution of the thermoeconomic optimization problem of refrigeration plant of the “air – air” type (conditioner), with CO2 as refrigerant, that works in the supercritical region made it possible to find optimum parameters of the system, which provide for the conditions of reaching minimum level of the resulting expenses at different values of tariffs for electric power. We examined effect of the value of tariff for electric power on the character of optimization of the system.

An application of this technique in practice should contribute to the reduction in financial costs for the creation and operation of conditioners that work on CO2, to an increase in their competitivness compared with traditional freon systems and contribute to the creation of conditions for their large-scale implementation in Ukraine.

Author Biographies

Mikhail Kuznetsov, A. N. Podgorny Institute problem in machinery of National Academy of Sciences of Ukraine Pozharsky str., 2/10, Kharkiv, Ukraine, 61046

PhD, Researcher

Department of modeling and identification of heat processes

Dionis Kharlampidi, A. N. Podgorny Institute problem in machinery of National Academy of Sciences of Ukraine Pozharsky str., 2/10, Kharkiv, Ukraine, 61046

Doctor of Technical Sciences, Leading Researcher

Department of modeling and identification of heat processes

Victoria Tarasova, A. N. Podgorny Institute problem in machinery of National Academy of Sciences of Ukraine Pozharsky str., 2/10, Kharkiv, Ukraine, 61046

PhD, Senior Researcher

Department of modeling and identification of heat processes

Evgeniy Voytenko, A. N. Podgorny Institute problem in machinery of National Academy of Sciences of Ukraine Pozharsky str., 2/10, Kharkiv, Ukraine, 61046

Postgraduate student

Department of modeling and identification of heat processes

References

  1. Fillipini, S., Merlo, U. (2014). Vozdushnye teploobmenniki dlja holodilnyh tsіklov na СО2. Holodilnaja technika, 1, 39–43.
  2. Sarkar, J., Bhattacharyya, S., Gopal, M. R. (2004). Optimization of a transcritical CO2 heat pump cycle for simultaneous cooling and heating applications. International Journal of Refrigeration, 27 (8), 830–838. doi: 10.1016/j.ijrefrig.2004.03.006
  3. Sawalha, S. (2008). Theoretical evaluation of trans-critical CO2 systems in supermarket refrigeration. Part I: Modeling, simulation and optimization of two system solutions. International Journal of Refrigeration, 31 (3), 516–524. doi: 10.1016/j.ijrefrig.2007.05.017
  4. Kim, S. G., Kim, Y. J., Lee, G., Kim, M. S. (2005). The performance of a transcritical CO2 cycle with an internal heat exchanger for hot water heating. International Journal of Refrigeration, 28 (7), 1064–1072. doi: 10.1016/j.ijrefrig.2005.03.004
  5. Kalnin, I. M., Pustovalov, S. B. (2006). Optimizatsija teplogidravlicheskih protsessov v osnovnyh apparatah teplovyh nasosov na diokside ugleroda (R744). Isparenie, kondensacija. Dvuhfaznye techenija, 5, 122–125.
  6. Sarkar, J., Bhattacharyya, S., Gopal, M. R. (2006). Simulation of a transcritical CO2 heat pump cycle for simultaneous cooling and heating applications. International Journal of Refrigeration, 29 (5), 735–743. doi: 10.1016/j.ijrefrig.2005.12.006
  7. Jasnikov, G. P., Belousov, V. S. (1977). Eksergeticheskoe predstavlenie v termodinamike neobratimyh protsesov. Ingenerno-fizicheskiy jornal, 32 (2), 336–341.
  8. Brodjanskiy, V. M., Verhivker, G. P., Karchev, Ja. Ja. et. al.; Dolinskogiy, A. A., Brodjanskiy, V. M. (Eds.) (1991). Eksergeticheskie raschety tehnicheskih sistem. Kyiv: Naukova dumka, 361.
  9. Protsenko, V. P., Kovylkin, N. A. (1985). Vybor optimalnyh temperaturnyh naporov v teploobmennikah teplonasosnoy ustanovki. Holodilnaja technika, 6, 11–14.
  10. Tribus, M., Evans, R. B. (1962). The thermoeconomics of sea water conversion. UCLA Report # 62-63, 241.
  11. El-Sayed, Y. M., Evans, R. B. (1970). Thermoeconomics and the Design of Heat Systems. Journal of Engineering for Power, 92 (1), 27. doi: 10.1115/1.3445296
  12. Onosovskiy, V. V., Kraynev, A. A. (1978). Vybor optimalnogo regima raboty holodilnyh mashin s ispolzovaniem metoda termoekonomicheskogo analiza. Holodilnaja technika, 5, 15–20.
  13. Onosovskiy, V. V., Rotgolts, E. A. (1980). Optimizatsija regima raboty dvuhstupenchatoy holodilnoy ustanovki. Holodilnaja technika, 12, 60–64.
  14. Onosovskiy, V. V. (1990). Modelirovanie i optimizatsija holodilnyh ustanovok. Leningrad: LTIRI, 205.
  15. Brodjanskiy, V. M., Fratsher, V., Mihalek, K. (1988). Eksergeticheskiy metod i ego prilozhenija. Moscow: Energoatomizdat, 288.
  16. Matsevytiy, Y. M., Bratuta, E. G., Kharlampidi, D. Kh., Tarasova, V. A. (2014). Systemno-structurniy analis parocompressornyh thermotransformatorov. Kharkov: A. N. Podgorny Institute problem in machinery of NAS of Ukraine, 269.
  17. Krasnoschekov, E. A., Kuraeva, I. V., Protopopov, V. S. (1969) Eksperimentalnoe issledovanie mestnoy teplootdachi dvuokisi ugleroda sverhkriticheskogo davlenija v uslovijah ohlazhdenija. Teplofizika vysokih temperatur, 7 (5), 922–930.
  18. Ortiz, T. M., Li, D., Groll, E. A. (2003). Evaluation of the performance potential of CO2 as a refrigerant in air-to-air air conditioners and heat pumps: system modeling and analysis. Final report. Arlington, Virginia: Air-conditioning and Refrigeration Technology Institute, 205.
  19. Petuhov, B. S., Kirillov, V. V. (1958). K voprosu o teploobmene pri turbulentnom techenii zhidkosti v trubah. Teploenergetika, 4, 63–68.
  20. Krasnoschekov, E. A., Protopopov, V. S. (1966). Eksperimentalnoe issledovanie teploobmena dvuokisi ugleroda v sverhkriticheskoy oblasti pri bolshih temperaturnyh naporah. Teplofizika vysokih temperatur, 4 (3), 389–398.
  21. Krasnoschekov, E. A., Sukomel, A. S. (1975). Zadachnik po teploperedache. Moscow: Energy, 280.
  22. Filonenko, G. K. (1954). Gidravlicheskoe soprotivlenie truboprovodov. Teploenergetika, 4-5, 40–44.
  23. Rezayan, O., Behbahaninia, A. (2011). Thermoeconomic optimization and exergy analysis of CO2/NH3 cascade refrigeration systems. Energy, 36 (2), 888–895. doi: 10.1016/j.energy.2010.12.022
  24. Danilova, G. N., Bogdanov, S. N., Ivanov, O. P., Mednikova, N. M.; Gogolin, A. A. (Ed.) (1973). Teploobmennye apparaty holodilnyh ustanovok. Leningrad: Mashinostroenie, 328.
  25. Isachenko, V. P., Osipova, V. A., Sukomel, A. S. (1981). Teploperedacha. Moscow: Energoizdat, 416.
  26. Koshkin, N. N., Sakun, I. A., Bambushek, E. M. et. al.; Sakun, I. A. (Ed.) (1985). Holodilnye mashiny. Leningrad: Mashinostroenie, 510.
  27. Kharlampidi, D. Kh., Tarasova, V. A., Kuznetsov, M. A. (2015). Advanced techniques of thermodynamic analysis and optimization оf refrigeration units. Technicheskie gasi, 6, 55–64. doi: 10.18198/j.ind.gases.2015.0802

Downloads

Published

2016-12-21

How to Cite

Kuznetsov, M., Kharlampidi, D., Tarasova, V., & Voytenko, E. (2016). Thermoeconomic optimization of supercritical refrigeration system with the refrigerant R744 (CO2). Eastern-European Journal of Enterprise Technologies, 6(8 (84), 24–32. https://doi.org/10.15587/1729-4061.2016.85397

Issue

Section

Energy-saving technologies and equipment