Decreasing the mass indices of gas turbine engines regenerators by means of choosing rational parameters

Authors

DOI:

https://doi.org/10.15587/1729-4061.2016.85458

Keywords:

gas turbine engine, regenerator, performance efficiency, mass of regenerator, effectiveness of regenerator

Abstract

The purpose of the conducted research was to develop a method for determining parameters of GTE regenerator, which would ensure at the initial stages of designing a minimum mass of the heat exchanger with the assigned values of efficiency.

We obtained dependences that establish relationships between the regenerator and the GTE, which allow analyzing the influence of effectiveness and pressure losses in regenerator on the efficiency of GTE and the mass of the regenerator.

Relationship between parameters of the regenerator and performance efficiency of regenerative GTE was described by functional dependence, where energy parameters of the regenerator are collected in a single complex. It was established that the magnitude of effectiveness of the regenerator is associated with efficiency by inversely proportional function, and pressure losses – by linear function. Effectiveness of the regenerator is associated with the mass of the heat exchanger and the geometry of heat exchange surface by exponential dependence, and relative pressure losses – by algebraic irrational function.

Based on these dependences, the algorithm for selecting rational energy and geometrical parameters of regenerators of GTE was developed. It was found that by selecting rational values of effectiveness of regenerator and pressure losses, it is possible to provide for a significant decrease in mass of the regenerator with a constant value of performance efficiency of GTE.

The obtained results of calculations of regenerators of GTE with different structural solutions allow a designer engineer to choose rational values of effectiveness of the regenerator, pressure losses, and initial gas temperature. Comparison of complex regenerative GTE by the mass of regenerator at constant values of performance efficiency was conducted. Based on the analysis of results of calculations, the stage dependence of specific mass of regenerator on the assigned increase in performance efficiency of regenerative GTE was obtained, which gives the possibility to estimate the mass of tubular regenerator at the initial stages of designing.

Implementation of the obtained results into the practice of designing regenerative GTE will make it possible to ensure the choice of their rational parameters and to decrease the time of designing.

Author Biographies

Viktor Gorbov, Admiral Makarov National University of Shipbuilding Heroiv Stalingrada ave., 9, Mykolaiv, Ukraine, 54025

PhD, Professor, Head of Department

Department of ship and stationary power plant

Denis Solomonuk, Admiral Makarov National University of Shipbuilding Heroiv Stalingrada ave., 9, Mykolaiv, Ukraine, 54025

Assistant

Department of ship and stationary power plant

References

  1. Ofitsiinyi sait Verkhovnoi Rady Ukrainy (2013). Enerhetychna stratehiia Ukrainy na period do 2030 roku ta dalshu perspektyvu. Available at: http://zakon3.rada.gov.ua/laws/show/n0002120-13/paran3#n3
  2. Paton, B., Khalatov, A., Kostenko, D., Bileka, B., Pysmennyi, O., Botsula, A., Parafiinyk, V., Koniakhin, V. (2008). Kontseptsiia (proekt) derzhavnoi naukovo-tekhnichnoi prohramy "Stvorennia promyslovykh hazoturbinnykh dvyhuniv novoho pokolinnia dlia hazovoi promyslovosti ta enerhetyky". Visn. NAN Ukrainy, 4, 3–9.
  3. Khalatov, A. A., Kostenko, D. A. (2008). Kakye hazoturbynnie dvyhately neobkhodymi hazotransportnoi systeme Ukrayni? Hazoturbynnye tekhnolohyy, 7, 22–24.
  4. Shchurovskyi, V. A. (2007). Osnovnie napravlenyia razvytyia hazoperekachyvaiushchei tekhnyky. Hazoturbynnie tekhnolohyy, 7, 38–39.
  5. Khalatov, A. A., Dolynskyi, A. A., Kostenko, D. A., Parafeinyk, V. P. (2010). Sostoianye y problemу razvytyia mekhanycheskoho pryvoda dlia HTS Ukraynу. Promуshlennaia teplotekhnyka, 32 (1), 44–53.
  6. Bondyn, Yu. N., Sultanskyi, Yu. O., Stashok, A. N. (2005). Hazoturbynnye dvyhately promyshlennoho prymenenyia (sostoianye y perspektyvy razvytyia). Naukovi pratsi: Naukovo-metodychnyi zhurnali MDHU im. P.Mohyly. Tekhnohenna bezpeka, 41 (28), 132–139.
  7. Shelestiuk, A. Y. (2004). Perspektyvy prymenenyia HTD NPKH "Zoria"-"Mashproekt" v enerhetyke Ukrayny. Sudovoe y enerhetycheskoe hazoturbostroenye, 2, 427–434.
  8. Dluhoselskyi, V. Y., Beliaev, V. E., Myshustyn, N. Y., Rybakov, V. P. (2007). Hazoturbynnye ustanovky dlia teplofykatsyy. Teploenerhetyka, 12, 64–66.
  9. Zariankyn, A. E., Rohalev, A. N., Maher, A. S. (2013). Raschetno-analytycheskoe yssledovanye vozmozhnostei povyshenyia moshchnosty parohazovykh ustanovok, rabotaiushchykh na baze odnoi HTU. Hazoturbynnye tekhnolohyy, 4, 40–43.
  10. Movchan, S. N., Bochkarev, Yu. V., Solomoniuk, D. N. (2009). Reheneratory proekta TsNYOKR "Mashproekt" dlia statsyonarnykh y sudovykh hazoturbynnykh ustanovok. Naukovi pratsi. Seriia «Tekhnohenna bezpeka», 111 (98), 205–210.
  11. Kolomieiev, V. M., Ksendziuk, M. V. (2006). HPU-16K: doslidno-promyslova ekspluatatsiia, mizhvidomchi pryimalni vyprobuvannia, perspektyvy vykorystannia. Naftova i hazova promyslovist, 4 (228), 38–40.
  12. Romanov, V. V., Spicyn, V. E., Bocula, A. L., Movchan, S. N., Chobenko, V. N. (2009). Osobennosti sozdaniya gazoturbinnoj ustanovki regenerativnogo cikla dlya GPA. Eastern-European Journal of Enterprise Technologies, 4 (4 (40)), 16–19. Available at: http://journals.uran.ua/eejet/article/view/20953/18578
  13. Spytsyn, V. E., Botsula, A. L., Chobenko, V. N., Solomonuk, D. N. (2008). Vysokoeffektyvnaia hazoturbynnaia ustanovka dlia HPA. Vestnyk natsyonalnoho tekhnycheskoho unyversyteta "KhPY", 35, 3–6.
  14. Arsenev, L. V., Tyryshkyn, V. H., Bohov, Y. A. (1989). Statsyonarnye hazoturbynnye ustanovky. Mashynostroenye, 543.
  15. Koval, V. A., Vasylev, B. P., Kanakov, V. V., Pavlenko, H. V., Romanov V. V. (2005) Osnovy proektyrovanyia hazoturbynnykh dvyhatelei y ustanovok. Kharkiv: Kontrast, 376.
  16. Hriaznov, N. D., Epyfanov, V. M., Yvanov, V. L., Manushyn, E. A. (1985). Teploobmennye ustroistva hazoturbynnykh y kombynyrovannykh ustanovok. Moscow: Mashynostroenye, 360.
  17. Bazhan, P. Y., Kanevets, H. E., Selyverstov, V. M. (1989). Spravochnyk po teploobmennym apparatam. Moscow: Mashynostroenye, 365.
  18. Kuznetsov, V. V., Solomoniuk, D. N. (2008). Proektyrovanye teploobmennykh apparatov dlia HTD slozhnykh tsyklov. Vestnyk natsyonalnoho tekhnycheskoho unyversyteta "KhPY", 35, 78–88.
  19. Kuznecov, V. V., Solomonyuk, D. N. (2009). Optimizaciya masso-gabaritnyh pokazatelej regeneratorov GTD. Eastern-European Journal of Enterprise Technologies, 4 (6 (40)), 48–52. Available at: http://journals.uran.ua/eejet/article/view/22025/19530
  20. Fylonenko, A. A., Kucherenko, O. S., Evseenko, A. V. (2007). Koheneratsyonnaia HTD s elementamy adaptatsyy k hrafykam teplovoho y elektrycheskoho potreblenyia. Naukovi pratsi MDHU. Seriia Tekhnohenna bezpeka, 61 (48), 198–206.
  21. Kaplan, M. P., Dyzenko, T. P. (2002). Teplovaia effektyvnost enerhetycheskykh teplofykatsyonnykh HTD s promezhutochnym okhlazhdenyem vozdukha y reheneratsyei. Teploenerhetyka, 8, 51–58.
  22. Ibrahima, T. K., Rahmana, M. M., Abdallac, A. N. (2011). Optimum Gas Turbine Configuration for Improving the performance of Combined Cycle Power Plant. Procedia Engineering, 15, 4216–4223.
  23. Nkoi, B., Pilidis, P., Nikolaidis, T. (2013). Performance assessment of simple and modified cycle turboshaft gas turbines. Propulsion and Power Research, 2 (2), 96–106. doi: 10.1016/j.jppr.2013.04.009
  24. Memon, A. G., Harijan, K., Uqaili, M. A., Memon, R. A. (2013). Thermo-environmental and economic analysis of simple and regenerative gas turbine cycles with regression modeling and optimization. Energy Conversion and Management, 76, 852–864. doi: 10.1016/j.enconman.2013.07.076
  25. Rovira, A., Sánchez, C., Muñoz, M. (2015). Analysis and optimisation of combined cycles gas turbines working with partial recuperation. Energy Conversion and Management, 106, 1097–1108. doi: 10.1016/j.enconman.2015.10.046
  26. Bade, M. H., Bandyopadhyay, S. (2015). Analysis of gas turbine integrated cogeneration plant: Process integration approach. Applied Thermal Engineering, 78, 118–128. doi: 10.1016/j.applthermaleng.2014.12.024
  27. Pysmennyi, E. N., Terekh, A. M., Semeniako, A. V., Baraniuk, A. V. (2010). Teploaerodynamycheskaia effektyvnost trubchatekh poverkhnostei nahreva reheneratorov HTU. Promyshlennaia teplotekhnyka, 32 (4), 63–73.
  28. Sayyaadi, H., Aminian, H. R. (2010). Design and optimization of a non-TEMA type tubular recuperative heat exchanger used in a regenerative gas turbine cycle. Energy, 35 (4), 1647–1657. doi: 10.1016/j.energy.2009.12.011
  29. Keis, V. M., London, A. L. (1962). Kompaktnye teploobmennyky. Moscow–Leningrad: Hosenerhoyzdat, 160.

Downloads

Published

2016-12-21

How to Cite

Gorbov, V., & Solomonuk, D. (2016). Decreasing the mass indices of gas turbine engines regenerators by means of choosing rational parameters. Eastern-European Journal of Enterprise Technologies, 6(8 (84), 12–23. https://doi.org/10.15587/1729-4061.2016.85458

Issue

Section

Energy-saving technologies and equipment