Simulation of influence of perturbation parameters on the new dual-channel capacitive mems gravimeter performance

Authors

DOI:

https://doi.org/10.15587/1729-4061.2016.85463

Keywords:

dual-channel capacitive gravimeter, MEMS gravimeter, aviation gravimetric system, acceleration of gravity, sensing element

Abstract

The paper considers a new dual-channel capacitive MEMS gravimeter of the automated aviation gravimetric system whose accuracy exceeds that of gravimeters that exist at present. It describes in detail its design, which consists of two identical channels. Each of them contains capacitive elements. The connection in series of the adder, amplifier, digital module and OC is performed by means of shielded coaxial cables. All this provides for an increased accuracy in measuring the anomalies of the acceleration of gravity and eliminates the impact of error from vertical acceleration. The simulation of the suspension with complex shape was carried out: the magnitude of impact amounted to 10 µN, displacement of the end of the elastic element equaled 0.5 µm. Based on this refinement, it is possible to accurately determine the value of coefficient of elasticity of the folded suspension. The system was tested on stability by the Nyquist and Hurwitz criteria. Using PC, a change in the initial signal was examined for different values of perturbation amplitudes and frequency for the most unfavorable resonance cases of a dual-channel capacitive gravimeter. An analysis of data revealed that an increase in amplitudes of horizontal acceleration does not affect the amplitude of the forced DCG oscillations.

Thus, the aviation gravimetric system proposed provides for a significant increase in accuracy of measuring the anomalies in the acceleration of gravity, and is appropriate for implementation.

Author Biographies

Olena Bezvesilna, National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute» Peremohy ave., 37, Kyiv, Ukraine, 03057

Doctor of Technical Sciences, Professor, Honored Worker of Science of Ukraine

Department of Instrumentation

Tetiana Khylchenko, Zhytomyr State Technological University Chernyakhovskogo str., 103, Zhуtomуr, Ukraine, 10005

Postgraduate student

Department of automation and computer-integrated technologies to them. prof. BB Samotokin

Andriy Tkachuk, Zhytomyr State Technological University Chernyakhovskogo str., 103, Zhуtomуr, Ukraine, 10005

PhD

Department of automation and computer-integrated technologies to them. prof. BB Samotokin

Sergii Nechai, National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute» Peremohy ave., 37, Kyiv, Ukraine, 03057

PhD, Associate Professor

Department of Instrumentation

References

  1. Bezvesil'na, O. M. (2007). Aviacijni gravimetrychni systemy ta gravimetry. Zhytomyr: ZhDTU, 604.
  2. Bykovskij, A. V., Polynkov, A. V. (2013). K voprosu o razrabotke malogabaritnogo ajerogravimetra. Vestnik MGTU im. N. Je. Baumana, 2 (14), 32–41.
  3. Girnjak, Ju. V. (2008). Mikroelektromehanichni systemy u suchasnomu pryladobuduvanni. Vymirjuval'na tehnika ta metrologija, 69, 97–102.
  4. Korobijchuk, I. V. (2015). Tehnichni zasoby avtomatyzacii'. Zhytomyr: ZhDTU, 904.
  5. Bezvesil'na, O. M., Tkachuk, A. G., Hyl'chenko, T. V. (2016). Pat. № 113038. Aviacijna gravimetrychna systema dlja vymirjuvan' anomalij pryskorennja syly tjazhinnja. MPK: G01V 7/02, G01V 7/16, G01P 15/09. No. a201512205; declareted: 09.12.2015; published: 25.11.2016, Bul. 22.
  6. Huang, Y., Olesen, A. V., Wu, M., Zhang, K. (2012). SGA-WZ: A New Strapdown Airborne Gravimeter. Sensors, 12 (12), 9336–9348. doi: 10.3390/s120709336
  7. Calvo, M., Hinderer, J., Rosat, S., Legros, H., Boy, J.-P., Ducarme, B., Zurn, W. (2014). Time stability of spring and superconducting gravimeters through the analysis of very long gravity records. Journal of Geodynamics, 80, 20–33. doi: 10.1016/j.jog.2014.04.009
  8. Agostino, G. D., Desogus, S., Germak, A., Origlia, C., Quagliotti, D., Berrino, G. et. al. (2008) The new IMGC-02 transportable absolute gravimeter: measurement apparatus and applications in geophysics and volcanology. Annals of geophysics, 51 (1), 39–49.
  9. Roussel, C., Verdun, J., Cali, J., Maia, M., d’ EU, J. F. (2015). Integration of a strapdown gravimeter system in an autonomous underwater vehicle. ISPRS – International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XL-5/W5, 199–206. doi: 10.5194/isprsarchives-xl-5-w5-199-2015
  10. Bykovskij, A. V., Polynkov, A. V., Arsen'ev, V. D. (2013). Ajerogravimetricheskij metod izmerenija gravitacionnyh anomalij. Aviakosmicheskoe priborostroenie, 12, 11–19.
  11. Bezvesil'na, O. M., Tkachuk, A. G., Koz'ko, K. S. (2014). Pat. № 105122. Aviacijna gravimetrychna systema dlja vymirjuvannja anomalij pryskorennja syly tjazhinnja. MPK G01V 7/00. No. a201304061; declareted: 01.04.2013; published: 10.04.2014, Bul. 7.
  12. Godovicyn, I. V., Sajkin, D. A., Fedorov, R. A., Amelichev, V. V.; Stempkovskiy, A. L. (Ed.) (2010). Raschet i modelirovanie osnovnyh parametrov differencial'nogo emkostnogo MJeMS-akselerometra. Moscow: IPPM RAN, 642–647.
  13. Shurygina, V. V. (2002). Dolgozhdannye MJeMS. Tehnologija malyh form. Jelektronika: Nauka, Tehnologija, Biznes, 4, 8–13.
  14. Sovremennye MJeMS-giroskopy i akselerometry. Available at: http://www.sovtest.ru/news/publications/sovremennye-mems_giroskopy-i-akselerometry/
  15. Implications of Emerging Micro and Nanotechnology (2002). Washington, D.C., 266. doi: 10.17226/10582
  16. Afonin, A. A., Sulakov, A. S., Jamashev, G. G., Mihajlin, D. A., Mirzojan, L. A., Kurmakov, D. V. (2013). O vozmozhnosti postroenija besplatformennogo upravljajushhego navigacionno–gravimetricheskogo kompleksa bespilotnogo letatel'nogo apparata. Trudy MAI, 66, 47–53.
  17. Bezvesil'naja, E. N., Hil'chenko, T. V. (2016). Analiz metodicheskih pogreshnostej dvuhkanal'nogo emkostnogo gravimetra. Sodruzhestvo, 3 (3), 51–54.
  18. Dekker, K., Verver, Ja. (1988). Ustojchivost' metodov Runge-Kutty dlja zhestkih nelinejnyh differencial'nyh uravnenij. Moscow: Mir, 334.
  19. Rukovodstvo po programmirovaniju na C#. Microsoft. Available at: https://msdn.microsoft.com/en–us/library/67ef8sbd.aspx

Downloads

Published

2016-12-22

How to Cite

Bezvesilna, O., Khylchenko, T., Tkachuk, A., & Nechai, S. (2016). Simulation of influence of perturbation parameters on the new dual-channel capacitive mems gravimeter performance. Eastern-European Journal of Enterprise Technologies, 6(7 (84), 50–57. https://doi.org/10.15587/1729-4061.2016.85463

Issue

Section

Applied mechanics