Development and application of the discrete model of multi-layered textile materials

Authors

DOI:

https://doi.org/10.15587/1729-4061.2016.85784

Keywords:

textile materials, spread of fluid, structure, multi-layered, discrete, continual, inhibition, cotton

Abstract

The discrete method of modeling the fluid passage through the textile material was developed, which makes it possible to define the boundary of the wetted section of material both at the surface and in the depth for materials with an arbitrary number of layers.

The essence of the proposed method lies in modeling the material with a system of cells and passages for spreading the fluid with the assigned characteristics.

Preliminary studies substantiated the relevance of this method, which was applied for studying a specific material. Such studies are necessary for the correct prediction of the processes that occur in therapeutic textile materials. They also create prerequisites for designing materials with the required properties.

We revealed the effect of additional concentrations inside the material, the consideration of which makes it possible to correctly predict the dynamics of fluid passage through textile material.

An analysis of functional dependences of the boundary of the wetted zone for two–layered fabrics, which are used for therapeutic purposes, allowed us to recommend it in the form of the sum of exponential function and exponential function with the maximum. Each two-layered material in this case is characterized by four constants in the course of the fluid passage.

The actual characteristics of two-layer textile material were defined. They are used for determining the fluid concentration in the lower layer of material. This makes it possible to predict the period of using material as a therapeutic textile system.

The use of the proposed method for multi–layer materials makes it possible to select the most rational characteristics of separate components for a specific case

Author Biography

Ganna Shchutska, Higher state educational establishment “Kyiv college of light industry” I. Kudri str., 29, Kyiv, Ukraine, 01601

PhD, Associate Professor

References

  1. Indushekar, R. (2005). Studies on Test Methods used to Measure Water Vapor Transmission of Fabrics by DSC and Conventional Dish Techniques. Journal of Industrial Textiles, 34 (4), 223–242. doi: 10.1177/1528083705051454
  2. Van Amber, R. R., Wilson, C. A., Laing, R. M., Lowe, B. J., Niven, B. E. (2014). Thermal and moisture transfer properties of sock fabrics differing in fiber type, yarn, and fabric structure. Textile Research Journal, 85 (12), 1269–1280. doi: 10.1177/0040517514561926
  3. Kang, Y. K., Park, C. H., Kim, J., Kang, T. J. (2007). Application of electrospun polyurethane web to breathable water-proof fabrics. Fibers and Polymers, 8 (5), 564–570. doi: 10.1007/bf02875881
  4. Holms, D. A. (2000). Waterproof Breathable Fabrics. Handbook of Technical Textiles. Cambridge: England, 282–315. doi: 10.1533/9781855738966.282
  5. Goessens, T., Malengier, B., Li, P., De Staelen, R. H. (2012). Diffusion of Active Ingredients in Textiles. Journal of Mathematical Modelling and Algorithms in Operations Research, 12 (3), 253–264. doi: 10.1007/s10852-012-9209-1
  6. Chichani, S., Guha, A. (2014). A Method of Modeling Fabric Shear using Finite Element Analysis. Journal of The Institution of Engineers (India): Series E, 96 (1), 1–7. doi: 10.1007/s40034-014-0051-z
  7. Pham, C., Greenwood, J., Cleland, H., Woodruff, P., Maddern, G. (2007). Bioengineered skin substitutes for the management of burns: A systematic review. Burns, 33 (8), 946–957. doi: 10.1016/j.burns.2007.03.020
  8. Adamson, R. (2009). Role of macrophages in normal wound healing: an overview. Journal of Wound Care, 18 (8), 349–351. doi: 10.12968/jowc.2009.18.8.43636
  9. Ciesielska-Wrobel, I. L., Van Langenhove, L. (2012). The hand of textiles – definitions, achievements, perspectives – a review. Textile Research Journal, 82 (14), 1457–1468. doi: 10.1177/0040517512438126
  10. Shyr, T.-W., Lin, J.-Y., Lai, S.-S. (2004). Approaches to Discriminate the Characteristic Generic Hand of Fabrics. Textile Research Journal, 74 (4), 354–358. doi: 10.1177/004051750407400412
  11. Varshney, R. K., Kothari, V. K., Dhamija, S. (2011). Influence of polyester fibre fineness and cross‐sectional shape on low‐stress characteristics of fabrics. Journal of the Textile Institute, 102 (1), 31–40. doi: 10.1080/00405000903453661
  12. Khoddami, A., Carr, C. M., Gong, R. H. (2009). Effect of hollow polyester fibres on mechanical properties of knitted wool/polyester fabrics. Fibers and Polymers, 10 (4), 452–460. doi: 10.1007/s12221-009-0452-7
  13. Das, A., Kothari, V. K., Balaji, M. (2007). Studies on cotton–acrylic bulked yarns and fabrics. Part I: Yarn characteristics. Journal of the Textile Institute, 98 (3), 261–267. doi: 10.1080/00405000701550163
  14. Grabowska, K. E., Ciesielska-Wrobel, I. (2014). Basic Comparison of the Properties of the Loop and Frotte Yarns, Woven and Knitted Fabrics. Autex Research Journal, 14 (3). doi: 10.2478/aut-2014-0009
  15. Ishtiaque, S. M., Das, A., Kundu, A. K. (2013). Ring frame process parameters and fabric comfort. Part I – low-stress mechanical properties of fabrics. The Journal of The Textile Institute, 105 (3), 348–355. doi: 10.1080/00405000.2013.840413
  16. Kim, H. A., Kim, S. J. (2013). Mechanical properties of worsted fabrics for emotional garment to the rapier loom characteristics. Fibers and Polymers, 14 (12), 2163–2168. doi: 10.1007/s12221-013-2163-3
  17. Tang, K. P., Fan, J. T., Zhang, J. F., Sarkar, M. K., Kan, C. W. (2013). Effect of softeners and crosslinking conditions on the performance of easy-care cotton fabrics with different weave constructions. Fibers and Polymers, 14 (5), 822–831. doi: 10.1007/s12221-013-0822-z
  18. Lam, Y. L., Kan, C. W., Yuen, C. W. M. (2014). Objective measurement of hand properties of plasma pre-treated cotton fabrics subjected to flame-retardant finishing catalyzed by zinc oxide. Fibers and Polymers, 15 (9), 1880–1886. doi: 10.1007/s12221-014-1880-6
  19. Mori, M., Fujimoto, T., Murakami, M., Matsudaira, M. (2013). Correlation with itchy feeling of fabric handling change by physicochemical processing of woolen fabric. Fibers and Polymers, 14 (12), 2202–2211. doi: 10.1007/s12221-013-2202-0
  20. Ozen, I. (2012). Multi-layered Breathable Fabric Structures with Enhanced Water Resistance. Journal of Engineered Fibers and Fabrics, 7 (4), 63–69.
  21. Das, B., Das, A., Kothari, V., Fanguiero, R., Araujo, M. D. (2009). Moisture Flow through Blended Fabrics – Effect of Hydrophilicity. Journal of Engineered Fibers and Fabrics, 4 (4), 20–28.
  22. Riabchykov, N., Vlasenko, V., Arabuli, S. (2011). Linear mathematical model of water uptake perpendicular to fabric plane. Vlakna a textil, 2 (18), 24–29.
  23. Schutskaya, A., Suprun, N. (2015). Discrete two-dimensional model of moisture spreading in textile materials. Vlákna a textil. Textile Technologies, 34, 12–17.
  24. Liu, X., Liu, X. (2015). Numerical simulation of the three-dimensional flow field in four pneumatic compact spinning using the Finite Element Method. Textile Research Journal, 85 (16), 1712–1719. doi: 10.1177/0040517514553876
  25. Schutskaya, A., Suprun, N. (2016). Discrete three-dimensional model of moisture spreading in textile materials. Vlákna a textil. Textile Technologies, 23 (2), 15–22.

Downloads

Published

2016-12-27

How to Cite

Shchutska, G. (2016). Development and application of the discrete model of multi-layered textile materials. Eastern-European Journal of Enterprise Technologies, 6(5 (84), 39–45. https://doi.org/10.15587/1729-4061.2016.85784