Analysis of mathematical models of changing the vessel's course when turning

Authors

  • Yevgeniy Kalinichenko National University "Odessa Maritime Academy" Didrikhsona str., 8, Odesa, Ukraine, 65029, Ukraine
  • Igor Burmaka National University "Odessa Maritime Academy" Didrikhsona str., 8, Odesa, Ukraine, 65029, Ukraine

DOI:

https://doi.org/10.15587/1729-4061.2016.85839

Keywords:

provision of navigation safety, motion control, vessel’s turn, dynamic models of turning ability

Abstract

Mathematical models of changing the course of a vessel when turning without taking into account the duration of putting the rudder blade over are presented. All in all, three models of different degree of adequacy to the actual turning process were explored, and the correspondence of mathematical models to the experimental field observations of specific vessels was revealed. Analytical expressions for calculating the duration of both phases of a turn by the method of simple iterations were obtained.

An analysis of mathematical models under consideration was conducted for the purpose of identifying the model, most adequate to the actual process of the vessel’s turn. As a result of the imitation simulation of the vessel’s turn to 90°, whose inertial characteristics of turning ability were obtained from the field observations, it was established that when using mathematical model of the first type for the prediction of the curvilinear section, the trajectory error was 150¸200 m, for the second type of the model this value was 35¸40 m, and for the third type – 25¸30 m. The mathematical model of the vessel’s turning ability of the third type proved to be the most acceptable, since along with sufficient simplicity it possesses the required accuracy (maximum divergence of experimental and model trajectories is 25¸30 m.

Results of the study can be used in navigation information systems for developing the function of calculation of parameters of the vessel’s turn for the assigned initial data.

Author Biographies

Yevgeniy Kalinichenko, National University "Odessa Maritime Academy" Didrikhsona str., 8, Odesa, Ukraine, 65029

Senior Lecteur

Department of Ship Handling

Igor Burmaka, National University "Odessa Maritime Academy" Didrikhsona str., 8, Odesa, Ukraine, 65029

PhD, Associate Professor

Department of Theory and ship’s construction

References

  1. Stebnovskyi, O. V. (2010). Formyrovanye perekhodnoi traektoryy povorota sudna. Avtomatyzatsyia sudovykh tekhnycheskykh sredstv, 16, 92–95.
  2. Chapchai, E. P. (2006). Eksperymentalnoe yssledovanye modelei povorotlyvosty sudna. Sudovozhdenye, 11, 139–142.
  3. Tsymbal, N. N., Burmaka, I. A., Tyupikov, E. E. (2007). Gibkie strategii raskhozhdeniya sudov. Odesa: KP OGT, 424.
  4. Burmaka, Y. A. (2005). Rezultaty ymytatsyonnoho modelyrovanyia protsessa raskhozhdenyia sudov s uchetom ykh dynamyky. Sudovozhdenye, 10, 21–25.
  5. Vahushchenko, L. L. (2000). Sudno kak ob’ekt avtomatycheskoho upravlenyia. Odesa, 140.
  6. Burmaka, Y. A. (2002). Uchet dynamyky sudna pry vybore manevra raskhozhdenyia. Sudovozhdenye, 4, 32–36.
  7. Chapchai, E. P. (2005). Uchet vremeny perekladky pera rulia pry povorote. Sudovozhdenye, 9, 110–113.
  8. Popov, A. V. (2005). O povyshenii upravljaemosti sudna pri vetre posredstvom vvoda intellektual'noj sostavljajushhej v algoritm avtorulevogo. Vestnik VGAVT, 14, 27–35.
  9. Judin, Ju. I. (2006). Manevrennye harakteristiki sudna kak funkcii parametrov ego matematicheskoj modeli. MGTU, 2, 234–240.
  10. Paulauskas, V., Paulauskas D, Steenberg, S. M. (2006). External forces influence on ships steering in extreme conditions. Proceedings of the 10 International Conference, 158–160.
  11. Glushkov, S. V. (2007). Ispol'zovanie nechetkoj logiki v sisteme avtomaticheskogo upravlenija kursom sudna. Pribory i sistemy: Upr., kontrol', diagnost, 8, 28–32.
  12. Os'kin, D. A. (2008). Sistema upravlenija morskim sudnom s ispol'zovaniem nejrosetevoj identifikacionnoj modeli. Vestnik Morskogo gosudarstvenogo universiteta, 27, 3–12.
  13. Pyskunov, N. S. (1985). Dyfferentsyalnoe y yntehralnoe yschyslenye. Moscow: Nauka, 560.
  14. Kraskevych, V. E., Zelynskyi, K. Kh., Hrechko, V. Y. (1986). Chyslennye metody v ynzhenernykh yssledovanyiakh. Kyiv: Vyscha shkola, 264.
  15. Ovchynnykov, P. F. (1993). Matematycheskoe modelyrovanye system mekhanyky, elektromekhanyky y avtomatyky. Kyiv, 280.
  16. Benedict, K., Kirchhoff, M., Gluch, M., Fischer, S., Baldauf, M. (2009). Manoeuvring Simulation on the Bridge for Predicting Motion of Real Ships and as Training Tool in Ship Handling Simulators. TransNav, International magazine on marine navigation and safety of marine transport, 3 (1), 25–30.
  17. Benedict, K., Kirchhoff, M., Gluch, M., Fischer, S., Schaub, M., Baldauf, M., Klaes, S. (2014). Simulation Augmented Manoeuvring Design and Monitoring: a New Method for Advanced Ship Handling. TransNav, the International Journal on Marine Navigation and Safety of Sea Transportation, 8 (1), 131–141. doi: 10.12716/1001.08.01.15
  18. Shi, C. J., Zhao, D., Peng, J., Shen, C. (2009). Identification of Ship Maneuvering Model Using Extended Kalman Filters. TransNav, International magazine on marine navigation and safety of marine transport, 3 (1), 105–110.
  19. Ljacki, M. (2016). Intelligent Prediction of Ship Maneuvering. International magazine on marine navigation and safety of marine transport, 10 (3), 511–516.

Downloads

Published

2016-12-26

How to Cite

Kalinichenko, Y., & Burmaka, I. (2016). Analysis of mathematical models of changing the vessel’s course when turning. Eastern-European Journal of Enterprise Technologies, 6(9 (84), 20–31. https://doi.org/10.15587/1729-4061.2016.85839

Issue

Section

Information and controlling system