Mathematical modeling of strength of honeycomb panel for packing and packaging with regard to deviations in the filler parameters

Authors

DOI:

https://doi.org/10.15587/1729-4061.2016.85853

Keywords:

packaging materials, three-layered panel, honeycomb filler, imperfections in filler, model of strength

Abstract

A mathematical modeling of strength of the honeycomb panels for packing containers and packaging is presented. A panel works under combined loading by the forces of compression and shear. The Bubnov-Galerkin method is used for the solution of the problem on stability. The solution of the problem on stability of a three-layered panel includes the physical-mechanical characteristics of honeycomb filler, which depend on the geometric dimensions of honeycomb filler. Locations of origin of imperfections in the parameters of honeycomb filler are analyzed. Special features of the influence of deviations in filler on its physical-mechanical characteristics are examined. An analysis of the effect of deviations in the parameters of honeycomb filler on the bearing capacity of a three-layered panel is carried out. It is demonstrated that for the provision of value of critical shear in the range of permissible values, it is necessary that the deviations in the parameters of honeycomb filler are within certain interconnected ranges. A basic result of the represented study is the improvement of the model of strength of a three-layered panel taking into account the influence of deviations in honeycomb filler for the case of complex loading by the forces of compression and shear of the elements of packing containers and packaging. Results of the study might be used for the solution of the problem on determining the quantitative characteristics of quality and working ability of a three-layered honeycomb panel.

Author Biographies

Vitaly Gaydachuk, N. E. Zhukovskiy National Aerospace University "Kharkiv Aviation Institute" Chkalova str., 17, Kharkiv, Ukraine 61070

Doctor of Technical Sciences, Professor

Department of Constructions and Designing of Rocket Engineering

Ganna Koloskova, N. E. Zhukovskiy National Aerospace University "Kharkiv Aviation Institute" Chkalova str., 17, Kharkiv, Ukraine 61070

PhD, Associate Professor

Department of Theoretical Mechanics, Engineering Science and Robotics Systems 

References

  1. Slivinskiy, V. I., Tkachenko, G. V., Koloskova, A. N. (2001). Ob’yektivnyye predposylki effektivnogo primeneniya sotovykh konstruktsiy. Voprosy proyektirovaniya i proizvodstva konstruktsiy letatel'nykh apparatov, 25 (2), 109–115.
  2. Gaydachuk, A. V., Slivinskiy, V. I. (2000). O kontseptsii kvalimetrii i upravleniya kachestvom proizvodstva sotovykh zapolniteley i konstruktsiy. Voprosy proyektirovaniya i proizvodstva konstruktsiy letatel'nykh apparatov, 22 (5), 56–64.
  3. Guo, Y., Becker, W., Xu, W. (2013). Vertical static compression performance of honeycomb paperboard. International Journal of Materials Research, 104 (6), 598–602. doi: 10.3139/146.110896
  4. Wang, D., Bai, Z. (2015). Mechanical property of paper honeycomb structure under dynamic compression. Materials & Design, 77, 59–64. doi: 10.1016/j.matdes.2015.03.037
  5. Fan, T. (2016). Dynamic crushing behavior of functionally graded honeycomb structures with random defects. International Journal of Materials Research, 107 (9), 783–789. doi: 10.3139/146.111403
  6. Wang, D.-M., Wang, Z.-W. (2008). Experimental investigation into the cushioning properties of honeycomb paperboard. Packaging Technology and Science, 21 (6), 309–316. doi: 10.1002/pts.808
  7. Gaydachuk, A. V., Slivinsky, M. V., Golovanevsky, V. A. (2006). Technological Defects Classification System for Sandwiched Honeycomb Composite Materials Structures. Materials Forum, 30, 96–102.
  8. Slyvyns’kyy, V., Slyvyns’kyy, M., Gajdachuk, A., Gajdachuk, V., Melnikow, S., Kirichenko, V. (2007). Technological possibilities for increasing quality of honeycomb cores used in aerospace engineering. 58th International Astronautical Congress, 1–7.
  9. Gaydachuk, V. Ye., Mel'nikov, S. M. (2006). O vozmozhnosti reglamentatsii defektov, voznikayushchikh v protsesse rastyazhki sotopaketa v sotoblok pri proizvodstve sotovykh zapolniteley. Aviatsionno-kosmicheskaya tekhnika i tekhnologiya, 5 (31), 5–10.
  10. Karpikova, O. A. (2009). Sozdaniye sotovykh zapolniteley s zadannymi fiziko-mekhanicheskimi kharakteristikami. Vísnik Dnípropetrovs'kogo universitetu. Seríya: Raketno-kosmíchna tekhníka, 13 (2), 7–10.
  11. Gaydachuk, V. Ye., Kirichenko, V. V., Mel'nikov, S. M. (2007). Metody normirovaniya dopuskov na tekhnologicheskiye parametry protsessa proizvodstva sotovykh zapolniteley iz metallicheskoy fol'gi. Effektivnost' sotovykh konstruktsiy v izdeliyakh aviatsionno-kosmicheskoy tekhniki, 87–95.
  12. Iyerusalimskiy, K. M., Sinitsin, Ye. N. (1973). Ustoychivost' trekhsloynykh plastin i tsilindricheskikh paneley iz kompozitsionnykh materialov pri kombinirovannom nagruzhenii. Uchenyye zapiski TSAGI, 4 (4), 65–72.
  13. Panin, V. F., Gladkov, Yu. A. (1991). Konstruktsii s zapolnitelyami. Moscow: Mashinostroyeniye, 272.
  14. Slivinskiy, M. V. (2007). Klassifikatsiya tekhnologicheskikh defektov sotovykh zapolniteley iz polimernykh bumag i puti yeye realizatsii dlya povysheniya ikh kachestva. Otkrytyye informatsionnyye i komp'yuternyye integrirovannyye tekhnologii, 36, 56–61.
  15. Mel'nikov, S. M. (2006). Defekty formy yacheyki sotovogo zapolnitelya, voznikayushchiye v protsesse formoobrazovaniya sotopaketa, i ikh reglamentatsiya. Otkrytyye informatsionnyye i komp'yuternyye integrirovannyye tekhnologii, 32, 69–75.

Downloads

Published

2016-12-26

How to Cite

Gaydachuk, V., & Koloskova, G. (2016). Mathematical modeling of strength of honeycomb panel for packing and packaging with regard to deviations in the filler parameters. Eastern-European Journal of Enterprise Technologies, 6(1 (84), 37–43. https://doi.org/10.15587/1729-4061.2016.85853

Issue

Section

Engineering technological systems