The use of contact heat generators of the new generation for heat production

Authors

DOI:

https://doi.org/10.15587/1729-4061.2016.86088

Keywords:

contact heat-generator, thermal energy and heat supply to large cities and industrial regions, heat generation

Abstract

We substantiated the need for searching for, and realization of, fundamentally new approaches, using more efficient physical, heat-mass-exchanging and aerodynamic processes, which will make it possible to improve energy effectiveness and ecological cleanliness of heat generation in the systems for individual and decentralized heat supply.

For the heat supply to large cities and industrial regions, we examined the advantages of using highly efficient contact heat-generators of different types, which include compactness due to low metal consumption and, as a result, attractive price.

It is proposed to use a heat-generator of contact type of the new generation, with the aid of which it was possible to solve a set of problems on the qualitative combustion of fuel and effective heat exchange of gases with the heated water. The use of tubular technology for the combustion of gas is its special feature. Due to it, quality heat exchanging characteristics are provided.

In view of further studies, we presented the relevance of creating heat-generators with the use of highly effective hydrogen technologies, which will make it possible to devise the new energy paradigm of heat supply for residential areas and industrial zones through the possibility of accumulation of electrical energy and accumulation of hydrogen. 

Author Biographies

Gennadii Varlamov, National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute" Peremohy ave., 37, Kyiv, Ukraine, 03056

Doctor of Technical Sciences, Professor

Department of Theoretical and industrial heating engineering 

 

Kateryna Romanova, National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute" Peremohy ave., 37, Kyiv, Ukraine, 03056

Assistant

Department of Theoretical and industrial heating engineering 

Olga Daschenko, National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute" Peremohy ave., 37, Kyiv, Ukraine, 03056

Assistant

Department of Theoretical and industrial heating engineering 

Mykola Ocheretyanko, National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute" Peremohy ave., 37, Kyiv, Ukraine, 03056

Department of Theoretical and industrial heating engineering 

Stanyslav Kasyanchuk, National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute" Peremohy ave., 37, Kyiv, Ukraine, 03056

Department of Theoretical and industrial heating engineering 

References

  1. Sokolov, E. (2001). Teplofikaciya i teplovye seti. Мoscow: МEI, 272.
  2. Vakiloroaya, V., Samali, B., Fakhar, A., Pishghadam, K. (2014). A review of different strategies for HVAC energy saving. Energy Conversion and Management, 77, 738–754. doi: 10.1016/j.enconman.2013.10.023
  3. Pérez-Lombard, L., Ortiz, J., Coronel, J. F., Maestre, I. R. (2011). A review of HVAC systems requirements in building energy regulations. Energy and Buildings, 43 (2-3), 255–268. doi: 10.1016/j.enbuild.2010.10.025
  4. Fadzli Haniff, M., Selamat, H., Yusof, R., Buyamin, S., Sham Ismail, F. (2013). Review of HVAC scheduling techniques for buildings towards energy-efficient and cost-effective operations. Renewable and Sustainable Energy Reviews, 27, 94–103. doi: 10.1016/j.rser.2013.06.041
  5. Kintner-Meyer, M., Emery, A. F. (1995). Optimal control of an HVAC system using cold storage and building thermal capacitance. Energy and Buildings, 23 (1), 19–31. doi: 10.1016/0378-7788(95)00917-m
  6. Ghahramani, A., Jazizadeh, F., Becerik-Gerber, B. (2014). A knowledge based approach for selecting energy-aware and comfort-driven HVAC temperature set points. Energy and Buildings, 85, 536–548. doi: 10.1016/j.enbuild.2014.09.055
  7. Sosnin, Y. P., Buharkin, E. N. (1988). Vysokoeffektivnye gazovye kontaktnye vodonagrevateli. Мoscow: Stroyizdat, 376.
  8. Gubarev, A. V., Kuleshov, M. I., Pogonin, A. A. (2012). Povyshenie effektivnosti avtonomnyh sistem teplosnabzheniya pri ispolzovanii v nih teplogeneratorov kondensacionnogo tipa. Vestnik NTU "KhPI": energetichnі ta teplotehnіchnі procesi j ustatkuvannya, 8, 117–125.
  9. Vakiloroaya, V., Ha, Q. P., Samali, B. (2013). Energy-efficient HVAC systems: Simulation–empirical modelling and gradient optimization. Automation in Construction, 31, 176–185. doi: 10.1016/j.autcon.2012.12.006
  10. Kesova, L. A., Litovkin, V. V. (2010). V innovaciya v ugolnyh tehnologiyah dlya pylevidnogo szhiganiya na tes. Energetika ta elektrifіkacіya, 10, 3–8.
  11. Hristich, V. A., Varlamov, G. B. (2006). Gazoturbinnye ustanovki: istoriya i perspektivy. Kyiv: Politehnika, 435.
  12. Varlamov, G. B., Lyubchik, G. B. (2004). Ispolzovanie metodov tehnologicheskogo predvideniya dlya analiza resursnyh i ekologicheskih problem energopotrebleniya. Innovacionnoe razvitie toplivno-energeticheskogo kompleksa: problemy i vozmozhnosti. Kyiv: Znaniya Ukrainy, 55–63.
  13. Dikij, М., Solomaha, A., Petrenko, V. (2013). Mathematical model of water droplets evaporation in air stream. Eastern-European Journal of Enterprise Technologies, 3 (10 (63)), 17–20. Available at: http://journals.uran.ua/eejet/article/view/14856/12658
  14. Sezonenko, B. D., Karp, I. M., Nikitin, V. Yu., Soroka, V. O., Komyak, O. O., Skotnikova, T. B., Sezonenko, O. B., Aleksyeyenko, V. V. (2002). Patent 46806 Ukrayina: MPK F 24 H 1/10. Kontaktnyy vodonahrival'nyy modul'. Zayavnyk i vlasnyk patentu Instytut Hazu NANU. # 98063156; declareted: 17.06.98; published: 17.06.02, Bul. 6, 4.
  15. Sezonenko, B. D., Nikitin, V. Yu., Soroka, V. O., Komyak, O. O., Skotnikova, T. B., Sezonenko, O. B., Aleksyeyenko, V. V. (2002). Patent 46101, Ukrayina, MPK F 24 H 1/10. Kontaktno-poverkhnevyy vodonahrivach. Zayavnyk i vlasnyk patentu Instytut Hazu NANU. # 98105244; declareted: 05.10.98; published15.05.02, Bul. 5, 3.
  16. Salo, V. P., Salo, A. M., Salo, A. V. (2003). Patent 59749 Ukrayina: MPK F24H 1/10. Kontaktnyy vodonahrivach. Zayavnyk i vlasnyk Salo V. P., Salo A. M., Salo A. V. # 20021210047; declareted: 13.11.02; published: 15.09.03, Bul. 9, 4.
  17. Marchenko, S. H., P’yatnychko, O. I., Makarenko, V. O. (2013). Patent 77099 Ukrayina: MPK F24H 1/10. Sposib kontaktnoho nahrivu vody. Zayavnyk i vlasnyk patentu Instytut Hazu NANU. # 201209409; declareted: 02.08.12, published: 25.01.13, Bul. 2, 4.
  18. Varlamov, G. B., Rodinkov, S. F., Prijmak, E. A., Olinevich, N. V., Varlamov, D. G. (2013). Patent 019766 EAPO: MPK F23D 14/02. Nizkoehmissionnaya gazovaya gorelka trubchatogo tipa s napravlennym vozdushnym potokom. Zayavnik і vlasnik patentu Rodinkov S. F., Varlamov G. B. # 201101134; declareted: 29.08.11; published: 29.03.13, Bul. 6, 10.
  19. Varlamov, G. B., Halatov, A. A. (2013). Aerodynamic and heat transfer characteristics of the combustion chambers of gtu with burner system of the tube type. Eastern-European Journal of Enterprise Technologies, 3 (12 (63)), 79–82. Available at: http://journals.uran.ua/eejet/article/view/14888/12692
  20. Marchenko, S. H., Varlamov, H. B., Ocheretyanko, M. D., Osipenko, Ye. O., Makarenko, V. O. (2016). Patent 7110596 Ukrayina: MPK F24H 1/10, F24H 8/00. Kontaktnyy vodonahrivach. Zayavnyk i vlasnyk patentu Instytut Hazu NANU. # 201605608; declareted: 24.05.16, published: 10.10.16, Bul. 19, 4.

Downloads

Published

2016-12-26

How to Cite

Varlamov, G., Romanova, K., Daschenko, O., Ocheretyanko, M., & Kasyanchuk, S. (2016). The use of contact heat generators of the new generation for heat production. Eastern-European Journal of Enterprise Technologies, 6(1 (84), 52–58. https://doi.org/10.15587/1729-4061.2016.86088

Issue

Section

Engineering technological systems