Analysis of role of time in the production process in a 4D space

Authors

DOI:

https://doi.org/10.15587/1729-4061.2016.86535

Keywords:

production process, time in a 4D space, production factors, collinearity of vectors, time increment

Abstract

It was established that theory and practice of calculations of “costs-time” and attempts to examine them in a 4D space are not systemic in nature. Production process is not examined in the system, in which the result of using resources over time is not the object of an interconnected and interdependent process. Time is considered as an independent variable implicitly, which significantly narrows the possibilities of prognostic calculations when introducing advanced technologies

Entering the metric space, geometric interpretation of space-and-time, makes it possible to establish the essence of time in a specific production process. It is manifested in the fact that the system of vectors of increment in time is collinear and co-directed to the corresponding vectors of an increment in volume of works. In this case, the vector of increment in time corresponds to each vector of increment in volume of works. The infinite number of vectors of increment in time corresponds to the infinite number of vectors of increment in volume of works, which is characteristic for a specific production process, causing “compressibility” and “stretching” of the time parameter along with the changes in increments in volume of work and productivity.

The example of calculating prospective volumes of work in a 4D space, including basic production resources and time, was performed. The calculation demonstrated the possibility of a considerable (up to 40 %) increase in accuracy of determining the required parameter.

Author Biographies

Vitaly Borovik, Volgograd City Duma 11 Sovetskaya str.,Volgograd, Russia, 400074

Doctor of Technical Sciences, Professor, аssistant to the Head of Volgograd, Сhairman of the scientific-technical expert council

 

Vitaly Borovik, Volgograd State Technical University Academicheskaya str., 1, Volgograd, Russia, 400074

PhD, Associate Professor

Department of construction of transport facilities

References

  1. Kazarian, V. P. (1980). Poniatye vremeny v strukture nauchnoho znanyia. Moscow: Izd-vo MHU, 1980. – 225 s.
  2. Smolin, L. (2006). The trouble with physics: the rise of string theory, the fall of a science, and what comes next. Boston: Houghton Mifflin, 2006, 416.
  3. Zynalyev, M. T. (2015). Fyzyka vremeny. LAP LAMBERT Academic Publishing, 364.
  4. Shumpeter, J. (2004). Ystoryia ekonomycheskoho analyza. In 3 volumes. Vol. 3. SpB.: Ekonomycheskaia shkola, 1353.
  5. Tinbergen, J. (1974). The Dynamics of Business Cycles: A Study in Economic Fluctuations. Chicago: U of Chicago P, 1974.
  6. MarketsandMarkets By: Report Code: SE 2497 Publishing Date: April 2016/3D & 4D Technology Market by Technology – 2022 MarketsandMarkets. Available at: http://www.marketsandmarkets.com/Market-Reports/3d-4d-technology-market-646.html
  7. Gaikwad, P. G., Prashant P. Nagrale, Nilesh Patil (2016). Analysis of Time and Cost Overruns in Road Project. Journal of Construction Engineering, Technology & Management, 6 (2), 52–57.
  8. Li, M., Wu, G. (2014). Robust Optimization for Time-Cost Tradeoff Problem in Construction Projects. Abstract and Applied Analysis, 2014, 1–7. doi: 10.1155/2014/926913
  9. Terry, S. B., Lucko, G. (2012). Algorithm for Time-Cost Tradeoff Analysis in Construction Projects by Aggregating Activity-Level Singularity Functions. Construction Research Congress 2012. doi: 10.1061/9780784412329.024
  10. Dahade, U. D., Hedaoo, N. A., Gupta, L. M., Ronghe, G. N. (2009). Time and Cost Evaluation of Construction of Steel Framed Composite Floor with Precast Concrete Floor Structure. 26th International Symposium on Automation and Robotics in Construction (ISARC 2009), 139–148.
  11. Castro-Lacouture, D., Süer, G. A., Gonzalez-Joaqui, J., Yates, J. K. (2009). Construction Project Scheduling with Time, Cost, and Material Restrictions Using Fuzzy Mathematical Models and Critical Path Method. Journal of Construction Engineering and Management, 135 (10), 1096–1104. doi: 10.1061/(asce)0733-9364(2009)135:10(1096)
  12. Berthaut, F., Pellerin, R., Perrier, N., Hajji, A. (2014). Time-cost trade-offs in resource-constraint project scheduling problems with overlapping modes. International Journal of Project Organisation and Management, 6 (3), 215. doi: 10.1504/ijpom.2014.065259
  13. Koo, B., Fischer, M. (2000). Feasibility Study of 4D CAD in Commercial Construction. Journal of Construction Engineering and Management, 126 (4), 251–260. doi: 10.1061/(asce)0733-9364(2000)126:4(251)
  14. Liapi, K. A. (2003). 4D visualization of highway construction projects. Proceedings on Seventh International Conference on Information Visualization, 2003. IV 2003. doi: 10.1109/iv.2003.1218054
  15. Chau, K. W., Anson, M., Zhang, J. P. (2005). 4D dynamic construction management and visualization software: 1. Development. Automation in Construction, 14 (4), 512–524. doi: 10.1016/j.autcon.2004.11.002
  16. Zanen, P. P. A., Hartmann, T., Al-Jibouri, S. H. S., Heijmans, H. W. N. (2013). Using 4D CAD to visualize the impacts of highway construction on the public. Automation in Construction, 32, 136–144. doi: 10.1016/j.autcon.2013.01.016
  17. Platt, A. (Ed.) (2007). 4D CAD for Highwaiy construction projects. Computer Integrated Construction Research Program, 117.
  18. Kleiner, H. B. (1986). Proyzvodstvennie funktsyy. Teoryia, metodi, prymenenye. Moscow: Fynansi y statystyka, 239.
  19. Borovyk, V. S., Borovyk, V. V., Prokopenko, Yu. E. (2013). Model upravlenyia vnedrenyem novoi tekhnolohyy na osnove proyzvodstvennoi funktsyy. Ekonomycheskyi analyz: teoryia y praktyka, 42 (345), 25–30.
  20. Bessonov, V. A. (2016). Problemi postroenyia proyzvodstvennikh funktsyi v rossyiskoi perekhodnoi ekonomyke. Available at: http://www.economicus.ru/macroeconomica/readings/Prois_funk.pdf (Last accessed: 11.04.2016).
  21. Einstein, A. (1905). Zur Elektrodynamik bewegter Körper. Annalen Der Physik, 322 (10), 891–921. doi: 10.1002/andp.19053221004
  22. Borovik, V., Borovik, V. (2016). Modelling of crystallization process of polymeric composition in space and time. Eastern-European Journal Enterprise Technologies, 3 (5 (81)), 4–10. doi: 10.15587/1729-4061.2016.69383
  23. Bohdanov, A. A. (1989). Tektolohyia: vseobshchaia orhanyzatsyonnaia nauka. 3rd edition. Moscow. Available at: http://gtmarket.ru/laboratory/basis/5909 (Last accessed: 07.10.2016).
  24. Mykhailov, V. S. (1988). Teoryia upravlenyia. Kyiv: Vyschsha shkola, 312.
  25. Vektornii analyz. Matematycheskaia entsyklopedyia. Vol. 1 (1977). Moscow: Izdatelstvo «Sovetskaia entsyklopedyia», 648.
  26. Pan, V. (2012) Fyzyka pryrodi prychynno-sledstvennikh svoistv prostranstvennoho fyzycheskoho vremeny. Vserossijskij zhurnal nauchnyh publikacij, 4 (14), 2–3.

Downloads

Published

2016-12-27

How to Cite

Borovik, V., & Borovik, V. (2016). Analysis of role of time in the production process in a 4D space. Eastern-European Journal of Enterprise Technologies, 6(10 (84), 41–48. https://doi.org/10.15587/1729-4061.2016.86535