Influence of temperature on the characteristics of Ni(II), Ti(IV) layered double hydroxides synthesised by different methods

Authors

  • Vitalii Solovov Ukrainian State University of Chemical Technology Gagarina ave., 8, Dnipro, Ukraine, 49005, Ukraine https://orcid.org/0000-0003-0646-7683
  • Vadym Кovalenko Ukrainian State University of Chemical Technology Gagarina ave., 8, Dnipro, Ukraine, 49005 Federal State Educational Institution of Higher Education "Vyatka State University" Moskovskaya str., 36, Kirov, Russian Federation, 610000, Ukraine https://orcid.org/0000-0002-8012-6732
  • Nikolai Nikolenko Ukrainian State University of Chemical Technology Gagarina ave., 8, Dnipro, Ukraine, 49005, Ukraine https://orcid.org/0000-0001-9289-2680
  • Valerii Kotok Ukrainian State University of Chemical Technology Gagarina ave, 8, Dnipro, Ukraine, 49005 Federal State Educational Institution of Higher Education "Vyatka State University" Moskovskaya str., 36, Kirov, Russian Federation, 610000, Ukraine https://orcid.org/0000-0001-8879-7189
  • Elena Vlasova National Metallurgical Academy of Ukraine Gagarin ave., 4, Dnipro, Ukraine, 49600, Ukraine https://orcid.org/0000-0002-6814-409X

DOI:

https://doi.org/10.15587/1729-4061.2017.90873

Keywords:

layered double hydroxide, nickel, titanium, coprecipitation at high supersaturation, homogeneous coprecipitation

Abstract

The influence of temperature on the characteristics of Ni(II)–Ti(IV) LDH was investigated in the work.

Ni(II)–Ti(IV) layered double hydroxides were synthesized from a solution of Ni2+ and Ti4+ with the cationic ratio of Ni2+/Ti4+=5 by using three coprecipitation techniques: titration, coprecipitation at high supersaturation and homogeneous coprecipitation. The prepared samples were characterized by means of X-ray diffraction (XRD), Thermogravimetric analysis (TGA) and Differential scanning calorimetry (DSC).

By means of XRD, it was revealed that all samples prepared using titration and coprecipitation at high supersaturation at 65 and 20 oC correspond to Ni-Ti LDH structure. Elevated temperature during sample preparation using titration and coprecipitation at high supersaturation did not have a significant effect on phase composition, but affected the crystallinity. According to XRD results, the sample prepared using homogeneous coprecipitation at 70 oC had a significant content of b-Ni(OH)2. Increasing the synthesis temperature to 80 oC has led to the almost complete disappearance of b-Ni(OH)2 reflections.

By means of TGA and DSC, it was found that titration method leads to formation of samples with higher thermal stability than those prepared by high supersaturation. Elevated temperature and hydrothermal treatment leads to higher thermal stability of the samples. Samples prepared by homogeneous coprecipitation show complicated behavior during thermal decomposition, confirming the presence of cyanate ions in the interlayer gallery.

Author Biographies

Vitalii Solovov, Ukrainian State University of Chemical Technology Gagarina ave., 8, Dnipro, Ukraine, 49005

Postgraduate student

Department of Analytical Chemistry and Food Additives and Cosmetics

Vadym Кovalenko, Ukrainian State University of Chemical Technology Gagarina ave., 8, Dnipro, Ukraine, 49005 Federal State Educational Institution of Higher Education "Vyatka State University" Moskovskaya str., 36, Kirov, Russian Federation, 610000

PhD, Associate Professor

Department of Analytical Chemistry and Food Additives and Cosmetics

Department of Technologies of Inorganic Substances and Electrochemical Manufacturing

Nikolai Nikolenko, Ukrainian State University of Chemical Technology Gagarina ave., 8, Dnipro, Ukraine, 49005

Doctor of Chemical Sciences, Professor, Head of Department

Department of Analytical Chemistry and Food Additives and Cosmetics

Valerii Kotok, Ukrainian State University of Chemical Technology Gagarina ave, 8, Dnipro, Ukraine, 49005 Federal State Educational Institution of Higher Education "Vyatka State University" Moskovskaya str., 36, Kirov, Russian Federation, 610000

PhD, Associate Professor

Department of Processes, Apparatus and General Chemical Technology

Department of Technologies of Inorganic Substances and Electrochemical Manufacturing

Elena Vlasova, National Metallurgical Academy of Ukraine Gagarin ave., 4, Dnipro, Ukraine, 49600

PhD, Associate Professor

Department of coating, composite materials and metal protection from corrosion

References

  1. Fan, G., Li, F., Evans, D. G., Duan, X. (2014). Catalytic applications of layered double hydroxides: recent advances and perspectives. Chem. Soc. Rev., 43 (20), 7040–7066. doi: 10.1039/c4cs00160e
  2. Shu, X., Zhang, W., He, J., Gao, F., Zhu, Y. (2006). Formation of Ni–Ti-layered double hydroxides using homogeneous precipitation method. Solid State Sciences, 8 (6), 634–639. doi: 10.1016/j.solidstatesciences.2006.02.029
  3. Zhang, W. H., Guo, X. D., He, J., Qian, Z. Y. (2008). Preparation of Ni(II)/Ti(IV) layered double hydroxide at high supersaturation. Journal of the European Ceramic Society, 28 (8), 1623–1629. doi: 10.1016/j.jeurceramsoc.2007.11.016
  4. Saber, O. (2007). Preparation and characterization of a new nano layered material, Co–Zr LDH. Journal of Materials Science, 42 (23), 9905–9912. doi: 10.1007/s10853-007-2097-5
  5. Saber, O., Tagaya, H. (2005). Preparation of new layered double hydroxide, Co-V LDH. Rev. Adv. Mater. Sci., 10, 59–63.
  6. Yang, L. J., Gao, X. P., Wu, Q. D., Zhu, H. Y., Pan, G. L. (2007). Phase Distribution and Electrochemical Properties of Al-Substituted Nickel Hydroxides. The Journal of Physical Chemistry C, 111 (12), 4614–4619. doi: 10.1021/jp0655468
  7. Jayashree, R. S., Kamath, P. V., Subbanna, G. N. (2000). The Effect of Crystallinity on the Reversible Discharge Capacity of Nickel Hydroxide. Journal of The Electrochemical Society, 147 (6), 2029. doi: 10.1149/1.1393480
  8. Min, S., Zhao, C., Chen, G., Qian, X. (2014). One-pot hydrothermal synthesis of reduced graphene oxide/Ni(OH)2 films on nickel foam for high performance supercapacitors. Electrochimica Acta, 115, 155–164. doi: 10.1016/j.electacta.2013.10.140
  9. Gu, Y., Lu, Z., Chang, Z., Liu, J., Lei, X., Li, Y., Sun, X. (2013). NiTi layered double hydroxide thin films for advanced pseudocapacitor electrodes. Journal of Materials Chemistry A, 1 (36), 10655. doi: 10.1039/c3ta10954b
  10. Кovalenko, V., Kotok, V., Bolotin, O. (2016). Definition of factors influencing on Ni(OH)2 electrochemical characteristics for supercapacitors. Eastern-European Journal of Enterprise Technologies, 5 (6 (83)), 17–22. doi: 10.15587/1729-4061.2016.79406
  11. Vidales-Hurtado, M. A., Mendoza-Galvan, A. (2008). Electrochromism in nickel oxide-based thin films obtained by chemical bath deposition. Solid State Ionics, 179 (35-36), 2065–2068. doi: 10.1016/j.ssi.2008.07.003
  12. Mondal, D., Villemure, G. (2012). Improved reversibility of color changes in electrochromic Ni–Al layered double hydroxide films in presence of electroactive anions. Journal of Electroanalytical Chemistry, 687, 58–63. doi: 10.1016/j.jelechem.2012.09.046
  13. Vidotti, M., Cordoba de Torresi, S. I. (2009). Electrostatic layer-by-layer and electrophoretic depositions as methods for electrochromic nanoparticle immobilization. Electrochimica Acta, 54 (10), 2800–2804. doi: 10.1016/j.electacta.2008.11.032
  14. Hassan, H. B., Hamid, Z. A. (2011). Electrodeposited Ni–Cr2O3 nanocomposite anodes for ethanol electrooxidation. International Journal of Hydrogen Energy, 36 (8), 5117–5127. doi: 10.1016/j.ijhydene.2011.01.024
  15. Wang, Y., Zhang, D., Peng, W., Liu, L., Li, M. (2011). Electrocatalytic oxidation of methanol at Ni–Al layered double hydroxide film modified electrode in alkaline medium. Electrochimica Acta, 56 (16), 5754–5758. doi: 10.1016/j.electacta.2011.04.049
  16. Huang, W., Li, Z. L., Peng, Y. D., Chen, S., Zheng, J. F., Niu, Z. J. (2005). Oscillatory electrocatalytic oxidation of methanol on an Ni(OH)2 film electrode. Journal of Solid State Electrochemistry, 9 (5), 284–289. doi: 10.1007/s10008-004-0599-5
  17. Lee, Y., Choi, J. H., Jeon, H. J., Choi, K. M., Lee, J. W., Kang, J. K. (2011). Titanium-embedded layered double hydroxides as highly efficient water oxidation photocatalysts under visible light. Energy & Environmental Science, 4 (3), 914. doi: 10.1039/c0ee00285b
  18. Li, B., Zhao, Y., Zhang, S., Gao, W., Wei, M. (2013). Visible-Light-Responsive Photocatalysts toward Water Oxidation Based on NiTi-Layered Double Hydroxide/Reduced Graphene Oxide Composite Materials. ACS Applied Materials & Interfaces, 5 (20), 10233–10239. doi: 10.1021/am402995d
  19. Azuma, S., Kawamura, G., Muto, H., Kakuta, N., Matsuda, A. (2014). Preparation of Layered Double Hydroxide and its Graphene Composite Films as Electrodes for Photoelectrochemical Cells. Key Engineering Materials, 616, 129–133. doi: 10.4028/www.scientific.net/kem.616.129
  20. Gao, Z., Du, B., Zhang, G., Gao, Y., Li, Z., Zhang, H., Duan, X. (2011). Adsorption of Pentachlorophenol from Aqueous Solution on Dodecylbenzenesulfonate Modified Nickel−Titanium Layered Double Hydroxide Nanocomposites. Industrial & Engineering Chemistry Research, 50 (9), 5334–5345. doi: 10.1021/ie101766e
  21. Shu, X., He, J., Chen, D. (2008). Visible-Light-Induced Photocatalyst Based on Nickel Titanate Nanoparticles. Industrial & Engineering Chemistry Research, 47 (14), 4750–4753. doi: 10.1021/ie071619d
  22. Shu, X., He, J., Chen, D., Wang, Y. (2008). Tailoring of Phase Composition and Photoresponsive Properties of Ti-Containing Nanocomposites from Layered Precursor. The Journal of Physical Chemistry C, 112 (11), 4151–4158. doi: 10.1021/jp711091m
  23. Burmistr, M. V., Boiko, V. S., Lipko, E. O., Gerasimenko, K. O., Gomza, Y. P., Vesnin, R. L. et. al. (2014). Antifriction and Construction Materials Based on Modified Phenol-Formaldehyde Resins Reinforced with Mineral and Synthetic Fibrous Fillers. Mechanics of Composite Materials, 50 (2), 213–222. doi: 10.1007/s11029-014-9408-0
  24. Ciocan, C. E., Dumitriu, E., Cacciaguerra, T., Fajula, F., Hulea, V. (2012). New approach for synthesis of Mo-containing LDH based catalysts. Catalysis Today, 198 (1), 239–245. doi: 10.1016/j.cattod.2012.04.071
  25. He, J., Shi, H., Shu, X., Li, M. (2009). On the nature of Ti(IV)-pillared layered metal hydroxides prepared from green, water-soluble Ti-peroxide. AIChE Journal, 56 (5), 1352–1362. doi: 10.1002/aic.12029
  26. Liu, Y., Murata, K., Hanaoka, T., Inaba, M., Sakanishi, K. (2007). Syntheses of new peroxo-polyoxometalates intercalated layered double hydroxides for propene epoxidation by molecular oxygen in methanol. Journal of Catalysis, 248 (2), 277–287. doi: 10.1016/j.jcat.2007.03.025
  27. Zhang, Y., Su, J., Wang, X., Pan, Q., Qu, W. (2012). Polyoxometallates Intercallated MgAl Layered Double Hydroxide and Its Photocatalytic Performance. Journal of Materials Scineces and Engineering B, 2 (1), 59–63.
  28. Kulyukhin, S. A., Krasavina, E. P., Rumer, I. A. (2015). Sorption of 137Cs from aqueous solutions onto layered double hydroxides containing the Fe(CN) 64- ion in the interlayer space. Radiochemistry, 57 (1), 69–72. doi: 10.1134/s1066362215010105
  29. Kovalenko, V. L., Kotok, V. A., Sykchin, A. A., Mudryi, I. A., Ananchenko, B. A., Burkov, A. A. et. al. (2016). Nickel hydroxide obtained by high-temperature two-step synthesis as an effective material for supercapacitor applications. Journal of Solid State Electrochemistry. doi: 10.1007/s10008-016-3405-2
  30. Kovalenko, V. L., Kotok, V. A. (2015). The synthesis of nickel hydroxide by electrolysis from nickel nitrate solution in the slit diaphragm electrolyzer. Electrochemical properties. Collection of research papers of National mining university, 49, 181–186.
  31. Kovalenko, V. L., Kotok, V. A., Bolotin, A. V. (2015). Method Development for Synthesis of Nickel Hydroxide with High Crystallinity. Providing the Study of the Characteristics of the Obtained Substance for Using with Accumulators and supercapacitors. Collection of research papers of National mining university, 48, 202–208.
  32. He, J., Wei, M., Li, B., Kang, Y., Evans, D. G., Duan, X. (2005). Preparation of layered double hydroxides. Springer Berlin Heidelberg, 89–119. doi: 10.1007/430_006
  33. Nikolenko, N. V., Kalashnykova, A. N., Solovov, V. A., Kostyniuk, A. O., Bayahia, H., Goutenoire, F. (2016). Peroxide-based route for the synthesis of zinc titanate powder. Arabian Journal of Chemistr. doi: 10.1016/j.arabjc.2016.06.018
  34. Zhao, Y., Chen, P., Zhang, B., Su, D. S., Zhang, S., Tian, L. et. al. (2012). Highly Dispersed TiO 6 Units in a Layered Double Hydroxide for Water Splitting. Chemistry – A European Journal, 18 (38), 11949–11958. doi: 10.1002/chem.201201065
  35. Chen, Z., Yang, W., Zhou, J., Lv, H., Liu, J., Cen, K. (2010). HNCO hydrolysis performance in urea-water solution thermohydrolysis process with and without catalysts. Journal of Zhejiang University-SCIENCE A, 11 (11), 849–856. doi: 10.1631/jzus.a0900798
  36. Schaber, P. M., Colson, J., Higgins, S., Thielen, D., Anspach, B., Brauer, J. (2004). Thermal decomposition (pyrolysis) of urea in an open reaction vessel. Thermochimica Acta, 424 (1-2), 131–142. doi: 10.1016/j.tca.2004.05.018
  37. Lei, L., Hu, M., Gao, X., Sun, Y. (2008). The effect of the interlayer anions on the electrochemical performance of layered double hydroxide electrode materials. Electrochimica Acta, 54 (2), 671–676. doi: 10.1016/j.electacta.2008.07.004
  38. Zhao, C., Ju, P., Wang, S., Zhang, Y., Min, S., Qian, X. (2016). One-step hydrothermal preparation of TiO2/RGO/Ni(OH)2/NF electrode with high performance for supercapacitors. Electrochimica Acta, 218, 216–227. doi: 10.1016/j.electacta.2016.09.122

Downloads

Published

2017-02-17

How to Cite

Solovov, V., Кovalenko V., Nikolenko, N., Kotok, V., & Vlasova, E. (2017). Influence of temperature on the characteristics of Ni(II), Ti(IV) layered double hydroxides synthesised by different methods. Eastern-European Journal of Enterprise Technologies, 1(6 (85), 16–22. https://doi.org/10.15587/1729-4061.2017.90873

Issue

Section

Technology organic and inorganic substances