Influence of complex activators of sintering on creating radiotransparent ceramics in SrO–Al2O3–SiO2

Authors

DOI:

https://doi.org/10.15587/1729-4061.2017.91110

Keywords:

strontium anorthite, sintering enhancer, radio transparent ceramic eutectic, the dielectric permittivity

Abstract

The study has solved the problem of obtaining densely sintered ceramics at a low firing temperature on the basis of the system SrO–Al2O3–SiO2. This was made possible after researching the influence of complex activators of sintering, selected among fluorides of alkali metals, and an oxide combination of stannum and lithium on the process of synthesizing strontium anorthite ceramics.

The tests have proved that it is technologically advisable to use the complex sintering activators LiF–NaF and SnO2–Li2O due to their low-temperature eutectics and beneficial effects on the structure and properties of strontium ceramics.

The experiments were used to study the impact of the complex sintering activators of a fluxing action in the amounts of 1–3 wt. %, with eutectic ratios of the components, on the low-temperature synthesis of strontium anorthite. The tests have confirmed the possibility of activating the reaction that produces the intermediate phase of silicate strontium, which reduces the temperature of firing strontium anorthite ceramics. The resulting ceramic material, based on a crystalline phase, is strontium anorthite, which was obtained at a synthesis temperature of 1,250 °C after adding 2 wt. % of Li2CO3+SnO2 to the composition “0” with the following properties: water absorption – 5.52 %, apparent density – 2.88 g/cm3, the dielectric constant – 9.7, and the dielectric loss tangent – 0.06.

Author Biographies

Georgij Lisachuk, National Technical University «Kharkiv Polytechnic Institute» Bagaliya str., 21, Kharkiv, Ukraine, 61002

Doctor of Technical Sciences, Professor

Department ceramics, refractories, glass and enamel

Ruslan Kryvobok, National Technical University «Kharkiv Polytechnic Institute» Bagaliya str., 21, Kharkiv, Ukraine, 61002

PhD, Senior Research

Department of engineering ceramics, refractories, glass and enamel

Artem Zakharov, National Technical University «Kharkiv Polytechnic Institute» Bagaliya str., 21, Kharkiv, Ukraine, 61002

Junior Researcher

Department of engineering ceramics, refractories, glass and enamel

Vitaliy Tsovma, Pology Chemical Plant Сoagulant ALC Lesi Ukrainki str., 243, Pology, Zaporizhia region, Ukraine, 70605

PhD, Chief Technologist of Construction Materials 

Olena Lapuzina, National Technical University «Kharkiv Polytechnic Institute» Bagaliya str., 21, Kharkiv, Ukraine, 61002

PhD, Professor

Department of engineering ceramics, refractories, glass and enamel

References

  1. Lisachuk, G. V., Krivobok, R. V., Zaharov, A. V., Fedorenko, E. Ju., Trusova, Ju. D. (2014). Perspektivnye radioprozrachnye keramicheskie materialy dlja raketnoj i kosmicheskoj tehniki. Visnyk NTU «KhPI». Serija: Himija, himichna tehnologija ta ekologija, 28, 72–79.
  2. Romashin, A. G., Gajdachuk, V. E., Karpov, Ja. S., Rusin, M. Ju. (2003). Radioprozrachnye obtekateli letatel'nyh apparatov. Proektirovanie, konstrukcionnye materialy, tehnologija proizvodstva, ispytanija. Kharkiv: Nac. ajerokosm. un-t «Har'k. aviac. in-t», 239.
  3. Talmy, I. G., Haught, D. A. (1990). Pat. 5642868 US, Int. Cl.6 B 64 C 1/10. Ceramic material. declareted: 02.05.1990, published: 01.07.1997, 5.
  4. Krzmanc, M. M., Valant, M., Suvorov, D. (2007). The synthesis and microwave dielectric properties of SrxBa1-xAl2Si2O8 and CayBa1-yAl2Si2O8 ceramics. Journal of the European Ceramic Society, 27 (2-3), 1181–1185. doi: 10.1016/j.jeurceramsoc.2006.05.017
  5. Bansal, N. P., Drummond, C. H. (1993). Kinetics of Hexacelsian-to-Celsian Phase Transformation in SrAl2Si2O8. Journal of the American Ceramic Society, 76 (5), 1321–1324. doi: 10.1111/j.1151-2916.1993.tb03758.x
  6. Sung, Y. M., Kwak, W. C. (2002). Influence of various heating procedures on the sintered density of Sr-celsian glass-ceramic. Journal of materials science letters, 21 (11), 841–843.
  7. Uvarova, N. E., Orlova, L. A., Popovich, N. V. (2008). Nizkotemperaturnyj sintez besshhelochnoj aljumosilikatnoj steklokeramiki. Uspehi v himii i himicheskoj tehnologii, 22 (7 (87)), 59–62.
  8. Shhegoleva, N. E., Grashhenkov, D. V., Sarkisov, P. D., Orlova, L. A., Popovich, N. V. (2012). Vlijanie dobavok V2O3 i R2O5 na kristallizacionnuju sposobnost' stroncijaljumosilikatnogo stekla. Tehnika i tehnologija silikatov, 19 (2), 7–14.
  9. Talmy, I. G., Zaykosk, J. A. (1995). Pat. US 5641440 A. Int. Cl.6 С04В 33/34. Sintering aids for producing BaO∙Al2O3∙2SiO2 and Sr O∙Al2O3∙2SiO2 ceramic materials. declareted: 26.07.1995, published: 24.06.1997, 5.
  10. Lisachuk, G. V., Kryvobok, R. V., Fedorenko, O. Ju., Zaharov, A. V., Chefranov, Je. V., Prytkina, M. S., Revuc'kyj, V. I. (2014). Osoblyvosti syntezu radioprozoroi' keramiky iz zadanymy radiofizychnymy vlastyvostjamy. Zbirnyk naukovyh prac' PAT "UkrNDIvognetryviv im. A. S. Berezhnogo", 114, 133–144.
  11. Ptacek, P., Soukal, F., Opravil, T., Bartonickova, E., Wasserbauer, J. (2016). The formation of feldspar strontian (SrAl2Si2O8) via ceramic route: Reaction mechanism, kinetics and thermodynamics of the process. Ceramics International, 42 (7), 8170–8178. doi: 10.1016/j.ceramint.2016.02.024
  12. Nikiforova, Je. M., Eromasov, R. G., Stupko, T. V., Raeva, O. V., Shestakov, I. Ja. (2013). Ispol'zovanie ftorsoderzhashhih mineralizatorov v silikatnyh sistemah. Sovremennye problemy nauki i obrazovanija, 1, 192.
  13. Appen, A. A. (1974). Himija stekla. Leningrad: Himija, 352.
  14. Bragina, L. L. et. al.; Bragina, L. L., Zubehin, A. P. (Eds.) (2003). Tehnologija jemali i zashhitnyh pokrytij. Kharkiv: NTU «KhPI», 484.
  15. Sangster, J. M., Pelton, A. D. System LiF-NaF; Composite. Phase Equilibrium Diagrams of Oxide Systems NIST Standart Reference Database 31 vol. 01. fig. 07487, 1987 1 elektron. opt. disk (CD-ROM): kol'or. Sistem. vimogi: 128 Mb RAM; 200 Mb available HDD; CD-ROM Windows 98/Me/2000/NT/XP.
  16. Sangster, J. M., Pelton, A. D. System КF-LiF; Composite. Phase Equilibrium Diagrams of Oxide Systems NIST Standart Reference Database 31 vol. 01. fig. 07473, 1987 1 elektron. opt. disk (CD-ROM): kol'or. Sistem. vimogi: 128 Mb RAM; 200 Mb available HDD; CD-ROM Windows 98/Me/2000/NT/XP.
  17. Sangster, J. M., Pelton, A. D. System КF-NaF; Composite. Phase Equilibrium Diagrams of Oxide Systems NIST Standart Reference Database 31 vol. 01. fig. 07475, 1987 1 elektron. opt. disk (CD-ROM). Sistem. vimogi: 128 Mb RAM; 200 Mb available HDD; CD-ROM Windows 98/Me/2000/NT/XP.
  18. Sangster, J. M., Pelton, A. D. System КF-LiF-NaF; Composite. Phase Equilibrium Diagrams of Oxide Systems NIST Standart Reference Database 31 vol. 01. fig. 07615, 1987 1 elektron. opt. disk (CD-ROM): kol'or. Sistem. vimogi: 128 Mb RAM; 200 Mb available HDD; CD-ROM Windows 98/Me/2000/NT/XP.
  19. Martel, L. C., Roth, R. S. System System Li2SnO3-Li2O. 1:1=Li2SnO3; 4:1=Li8SnO6; Composite. Phase Equilibrium Diagrams of Oxide Systems NIST Standart Reference Database 31 vol. 01. fig. 09191, 1981 1 elektron. opt. disk (CD-ROM): kol'or. Sistem. vimogi: 128 Mb RAM; 200 Mb available HDD; CD-ROM Windows 98/Me/2000/NT/XP.
  20. Lisachuk, G. V., Krivobok, R. V., Zaharov, A. V., Fedorenko, E. Ju., Pitak, Ja. N. (2015). Prognoznaja ocenka fazovogo sostava i svojstv radioprozrachnoj keramiki na osnove sistemy SrO-Al2O3-SiO2. Stroitel'nye materialy i izdelija, 1, 20–22.
  21. Shukla, A. (2012). Development of a critically evaluated thermodynamic database for the systems containing alkaline-earth oxides. Montreal, 350.

Downloads

Published

2017-02-17

How to Cite

Lisachuk, G., Kryvobok, R., Zakharov, A., Tsovma, V., & Lapuzina, O. (2017). Influence of complex activators of sintering on creating radiotransparent ceramics in SrO–Al2O3–SiO2. Eastern-European Journal of Enterprise Technologies, 1(6 (85), 10–15. https://doi.org/10.15587/1729-4061.2017.91110

Issue

Section

Technology organic and inorganic substances