Selective anodic treatment of W(WC)-based superalloy scrap

Authors

  • Vadym Кovalenko Ukrainian State University of Chemical Technology Gagarina ave., 8, Dnipro, Ukraine, 49005 Federal State Educational Institution of Higher Education "Vyatka State University" Moskovskaya str., 36, Kirov, Russian Federation, 610000, Ukraine https://orcid.org/0000-0002-8012-6732
  • Valerii Kotok Ukrainian State University of Chemical Technology Gagarina ave., 8, Dnipro, Ukraine, 49005 Federal State Educational Institution of Higher Education "Vyatka State University" Moskovskaya str., 36, Kirov, Russian Federation, 610000, Ukraine https://orcid.org/0000-0001-8879-7189

DOI:

https://doi.org/10.15587/1729-4061.2017.91205

Keywords:

superalloys, passivation, selective anodic treatment, tungsten, tungsten carbide

Abstract

Superalloys based on W/WC are widely used as elements of drilling equipment, high-speed steel-cutting tools, penetrators of armor-piercing munitions. The spent or broken superalloy goods are a valuable waste for recycling with extracting of valuable components. The most economically and technologically attractive methods of superalloy scrap recycling is selective treatment with dissolution of metal binder and obtaining of non-oxidized tungsten/tungsten carbide powder. The aim of the present work was to develop a method of selective anodic reprocessing of superalloys. By using voltamperometry method the anodic behavior of VK20KS (20% Со, 80 WC), VN8 (8 % Ni, 92 % WC), VNG (5 % Ni, 5 % Fe, 90 % W) and VNDS (W, Ni, Cu.) superalloys in a proposed solution has been studied. The possibility of selective anodic dissolution of metal binder without oxidation of solid component (tungsten/tungsten carbide) has been demonstrated. The potential and current density values for this process have been determined. Low reactivity of tungsten-based superalloys in comparison to tungsten carbide-based alloy has been demonstrated. Galvanostatic selective anodic treatment of VK20KS superalloy scrap at 15 A/dm2, which is a dissolution peak current density on the anodic curve, has been conducted. A phenomenon of gradual surface passivation due to dissolution of metal binder and increasing the content of passive tungsten carbide has been found. In order to prevent passivation, the use of rotating titanium basket has been proposed. The composition of tungsten-containing products has been determined to be: 23 % WO3 or H2WO4, 73 % WC.

Author Biographies

Vadym Кovalenko, Ukrainian State University of Chemical Technology Gagarina ave., 8, Dnipro, Ukraine, 49005 Federal State Educational Institution of Higher Education "Vyatka State University" Moskovskaya str., 36, Kirov, Russian Federation, 610000

PhD, Associate Professor

Department of Analytical Chemistry and Food Additives and Cosmetics

Department of Technologies of Inorganic Substances and Electrochemical Manufacturing

Valerii Kotok, Ukrainian State University of Chemical Technology Gagarina ave., 8, Dnipro, Ukraine, 49005 Federal State Educational Institution of Higher Education "Vyatka State University" Moskovskaya str., 36, Kirov, Russian Federation, 610000

PhD, Associate Professor

Department of Processes, Apparatus and General Chemical Technology

Department of Technologies of Inorganic Substances and Electrochemical Manufacturing

References

  1. Ciesla, M., Manka, M., Gradon, P., Binczyk, F. (2014). Impact of a Structure on Durability of Modified Nickel-Base Superalloys in Creep Conditions/ Wpływ Struktury Na Trwałość W Warunkach Pełzania Modyfikowanych Nadstopów Na Bazie Niklu. Archives of Metallurgy and Materials, 59 (4). doi: 10.2478/amm-2014-0264
  2. Masoumi, F., Shahriari, D., Jahazi, M., Cormier, J., Devaux, A. (2016). Kinetics and Mechanisms of γ′ Reprecipitation in a Ni-based Superalloy. Scientific Reports, 6, 28650. doi: 10.1038/srep28650
  3. Lin, Y. C., Li, L., He, D.-G., Chen, M.-S., Liu, G.-Q. (2017). Effects of pre-treatments on mechanical properties and fracture mechanism of a nickel-based superalloy. Materials Science and Engineering: A, 679, 401–409. doi: 10.1016/j.msea.2016.10.058
  4. Faga, M. G., Mattioda, R., Settineri, L. (2010). Microstructural and mechanical characteristics of recycled hard metals for cutting tools. CIRP Annals – Manufacturing Technology, 59 (1), 133–136. doi: 10.1016/j.cirp.2010.03.052
  5. Lee, J., Kim, E., Kim, J.-H., Kim, W., Kim, B.-S., Pandey, B. D. (2011). Recycling of WC–Co hardmetal sludge by a new hydrometallurgical route. International Journal of Refractory Metals and Hard Materials, 29 (3), 365–371. doi: 10.1016/j.ijrmhm.2011.01.003
  6. Gaona-Tiburcio, C., Aguilar, L. M. R., Zambrano, R. P., Estupinan, L. F., Cabral, M. J. A., Nieves-Mendoza, D. et. al. (2014). Electrochemical Noise Analysis of Nickel Based Superalloys in Acid Solutions. International Journal of Electrochemical Science, 9, 523–533
  7. Srivastava, R. R., Kim, M., Lee, J., Jha, M. K., Kim, B.-S. (2014). Resource recycling of superalloys and hydrometallurgical challenges. Journal of Materials Science, 49 (14), 4671–4686. doi: 10.1007/s10853-014-8219-y
  8. Jovic, V. D., Jovic, B. M., Pavlovic, M. G. (2006). Electrodeposition of Ni, Co and Ni–Co alloy powders. Electrochimica Acta, 51 (25), 5468–5477. doi: 10.1016/j.electacta.2006.02.022
  9. Burmistr, M. V., Boiko, V. S., Lipko, E. O., Gerasimenko, K. O., Gomza, Y. P., Vesnin, R. L. et. al. (2014). Antifriction and Construction Materials Based on Modified Phenol-Formaldehyde Resins Reinforced with Mineral and Synthetic Fibrous Fillers. Mechanics of Composite Materials, 50 (2), 213–222. doi: 10.1007/s11029-014-9408-0
  10. Vlasova, О., Kovalenko, V., Kotok, V., Vlasov, S. (2016). Research of the mechanism of formation and properties of threepolyphosphate coating on the steel basis. Eastern-European Journal of Enterprise Technologies, 5 (5 (83)), 33–39. doi: 10.15587/1729-4061.2016.79559
  11. Xing, W., Fan, X., Dong, H., Wu, Y., Fu, G., Liu, Y. (2013). Regeneration technology and progress of waste superalloy. Chinese Journal of Rare Metals, 37 (3), 494.
  12. Srivastava, R. R., Kim, M., Lee, J. (2016). Novel Aqueous Processing of the Reverted Turbine-Blade Superalloy for Rhenium Recovery. Industrial & Engineering Chemistry Research, 55 (29), 8191–8199. doi: 10.1021/acs.iecr.6b00778
  13. Yagi, R., Okabe, T. H. (2016). Recovery of Nickel from Nickel-Based Superalloy Scraps by Utilizing Molten Zinc. Metallurgical and Materials Transactions B, 48 (1), 335–345. doi: 10.1007/s11663-016-0854-z
  14. Wu, J., Su, T., Liu, G., Luo, M. (2016). Controlled potential for selectively dissolving nickel-based superalloy wastes containing rhenium element. JN: Xiyou Jinshu/Chinese Journal of Rare Metals.

Downloads

Published

2017-02-20

How to Cite

Кovalenko V., & Kotok, V. (2017). Selective anodic treatment of W(WC)-based superalloy scrap. Eastern-European Journal of Enterprise Technologies, 1(5 (85), 53–58. https://doi.org/10.15587/1729-4061.2017.91205