The development of a magnetically operated biosorbent based on the yeast saccharomyces cerevisiae for removing copper cations Cu2+




magnetic fluid, magnetohydrodynamic stirring, magnetically operated biosorbent, biosorption, magnetic susceptibility


The study has revealed that the process of obtaining a magnetically operated biosorbent depends on the medium pH, the strength of the permanent magnetic field of the installation for multivortical MHD stirring, the ratio of the mass of the nanosized magnetite to the yeast S. cerevisiae, and the process duration. The isotherms of copper cations sorption by magnetically operated biosorbents were obtained depending on the production duration. Tests were conducted to determine the magnetic susceptibility of the magnetically operated biosorbents.

The experiment results provide conclusions on the optimal parameters of the magnetically operated biosorbent production in terms of biosorption characteristics.

The study has disclosed an optimal magnetically operated biosorbent of copper cations based on the yeast S. cerevisiae under the following parameters of the production process: the external permanent magnetic field – 240 kA/m, the medium pH=2.5 with adding nitric acid according to previous studies, the ratio of the magnetite Fe3O4 to the yeast biomass – 1 % w/w, the duration of preparing the sorbent – 2 minutes, and the maximum sorption capacity – 25.5±0.5 mg Cu2+/g of the biosorbent dry mass.

The conducted tests have proved an opportunity to make biosorption by the yeast S. cerevisiae, and it is possible to remove the waste biosorbent by high gradient magnetic separation. The optimal conditions of production and the effectiveness of both the sorption capacity and the magnetic susceptibility make it possible to develop an efficient technology of wastewater cleaning from heavy metal cations.

Author Biographies

Svitlana Gorobets, National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute» Peremohy ave., 37, Kyiv, Ukraine, 03056

Doctor of technical sciences, Professor, Head of Department

Department of Bioinformatics

Yuriy Karpenko, National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute» Peremohy ave., 37, Kyiv, Ukraine, 03056

Postgraduate Student

Department of Bioinformatics


  1. Wang, J., Chen, C. (2009). Biosorbents for heavy metals removal and their future. Biotechnology Advances, 27 (2), 195–226. doi: 10.1016/j.biotechadv.2008.11.002
  2. Azevedo, R. B., Silva, L. P., Lemos, A. P. C., Bao, S. N., Lacava, Z. G. M., Safarik, I. et. al. (2003). Morphological study of saccharomyces cerevisiae cells treated with magnetic fluid. IEEE Transactions on Magnetics, 39 (5), 2660–2662. doi: 10.1109/tmag.2003.815547
  3. Safarik, I., Safarikova, M. (2007). Magnetically modified microbial cells: A new type of magnetic adsorbents. China Particuology, 5 (1-2), 19–25. doi: 10.1016/j.cpart.2006.12.003
  4. Jianlong, W. (2002). Biosorption of copper(II) by chemically modified biomass of Saccharomyces cerevisiae. Process Biochemistry, 37 (8), 847–850. doi: 10.1016/s0032-9592(01)00284-9
  5. Yu, J.-X., Wang, L.-Y., Chi, R.-A., Zhang, Y.-F., Xu, Z.-G., Guo, J. (2012). A simple method to prepare magnetic modified beer yeast and its application for cationic dye adsorption. Environmental Science and Pollution Research, 20 (1), 543–551. doi: 10.1007/s11356-012-0903-3
  6. Yang, S. H., Lee, T., Seo, E., Ko, E. H., Choi, I. S., Kim, B.-S. (2011). Interfacing Living Yeast Cells with Graphene Oxide Nanosheaths. Macromolecular Bioscience, 12 (1), 61–66. doi: 10.1002/mabi.201100268
  7. Morais, J. P. M. G., Azevedo, R. B., Silva, L. P., Lacava, Z. G. M., Bao, S. N., Silva, O. et. al. (2004). Magnetic resonance investigation of magnetic–labeled baker’s yeast cells. Journal of Magnetism and Magnetic Materials, 272-276, 2400–2401. doi: 10.1016/j.jmmm.2003.12.998
  8. Gorobets, S., Gorobets, O., Goyko, I., Mazur, S. (2004). Magnetohydrodynamic mixer of an electrolyte solution. Physica Status Solidi (c), 1 (12), 3455–3457. doi: 10.1002/pssc.200405478
  9. Gorobets, S. V., Karpenko, Yu. V., Marinchenko, L. V. (2010). Vikoristannya magnitokerovanih drizhdzhiv S. serevisiae dlya viluchennya ioniv midi. Bulletin of Donetsk National University. Series A: Natural Sciences, 14 (1), 230–236.
  10. Wang, J., Chen, C. (2006). Biosorption of heavy metals by Saccharomyces cerevisiae: A review. Biotechnology Advances, 24 (5), 427–451. doi: 10.1016/j.biotechadv.2006.03.001
  11. Santoso, U. T., Rodiansono, R., Junaidi, A. B., Umaningrum, D. (2015). Synthesis of Chitosan-Coated Magnetic Microparticle Using Glutaraldehyde as Crosslinker and PEG as Spacer Arm and Its Application as Adsorbent of Peat Humic Acid. Journal of Wetlands Environmental Management, 3 (1), 22–27.
  12. Peng, Q., Liu, Y., Zeng, G., Xu, W., Yang, C., Zhang, J. (2010). Biosorption of copper(II) by immobilizing Saccharomyces cerevisiae on the surface of chitosan-coated magnetic nanoparticles from aqueous solution. Journal of Hazardous Materials, 177 (1-3), 676–682. doi: 10.1016/j.jhazmat.2009.12.084
  13. Song, R., Bai, B., Puma, G. L., Wang, H., Suo, Y. (2015). Biosorption of azo dyes by raspberry-like Fe3O4@yeast magnetic microspheres and their efficient regeneration using heterogeneous Fenton-like catalytic processes over an up-flow packed reactor. Reaction Kinetics, Mechanisms and Catalysis, 115 (2), 547–562. doi: 10.1007/s11144-015-0854-z
  14. Li, T., Liu, Y., Peng, Q., Hu, X., Liao, T., Wang, H., Lu, M. (2013). Removal of lead(II) from aqueous solution with ethylenediamine-modified yeast biomass coated with magnetic chitosan microparticles: Kinetic and equilibrium modeling. Chemical Engineering Journal, 214, 189–197. doi: 10.1016/j.cej.2012.10.055
  15. Berovic, M., Berlot, M., Kralj, S., Makovec, D. (2014). A new method for the rapid separation of magnetized yeast in sparkling wine. Biochemical Engineering Journal, 88, 77–84. doi: 10.1016/j.bej.2014.03.014
  16. Xu, M., Zhang, Y., Zhang, Z., Shen, Y., Zhao, M., Pan, G. (2011). Study on the adsorption of Ca2+, Cd2+ and Pb2+ by magnetic Fe3O4 yeast treated with EDTA dianhydride. Chemical Engineering Journal, 168 (2), 737–745. doi: 10.1016/j.cej.2011.01.069
  17. Bau, H. H., Zhong, J., Yi, M. (2001). A minute magneto hydro dynamic (MHD) mixer. Sensors and Actuators B: Chemical, 79 (2-3), 207–215. doi: 10.1016/s0925-4005(01)00851-6
  18. Marques, P. A. S. S., Rosa, M. F., Pinheiro, H. M. (2000). pH effects on the removal of Cu2+, Cd2+ and Pb2+ from aqueous solution by waste brewery biomass. Bioprocess Engineering, 23 (2), 135–141. doi: 10.1007/pl00009118
  19. Gorobec', S. V., Karpenko, Ju. V. (2013). Vzajemozv’jazok elektroforetychnoi' ruhlyvosti magnitokerovanogo biosorbentu i jogo sorbcijnoi' jemnosti. Water treatment technologies technical, biological and ecological aspects. Kyiv: NTUU “KPI”, 69.
  20. Nishida, K., Silver, P. A.; Gray, J. V. (Ed.) (2012). Induction of Biogenic Magnetization and Redox Control by a Component of the Target of Rapamycin Complex 1 Signaling Pathway. PLoS Biology, 10 (2), e1001269. doi: 10.1371/journal.pbio.1001269
  21. Gorobets, S. V., Karpenko, Y. V. (2009). Intensification of sorption ability of yeast S. cerevisiae using multivortical magnetohydrodynamic mixing. Elektronyka y sviaz, 1 (2-3), 191–195.
  22. Gorobets, S. V., Gorobets, O. Y., Dvoynenko, O. K., Mykhailenko, N. O. (2010). Wastewater purification from cuprum (II) ions by magnetically operated biosorbent using high–gradient ferromagnetic fields. Research Bulletin of NTUU "Kyiv Polytechnic Institute", 3, 21–25.
  23. Sluiter, A., Hames, B., Hyman, D. et. al. (2008). Determination of total solids in biomass and total dissolved solids in liquid process samples. National Renewable Energy Laboratory, 1–6.
  24. Dvoynenko, O. K., Gorobets, S. V., Kuznetsov Y. O., Gorobets, O. Y. (2010). Doslidzhennya mahnitnoyi spryynyatlyvosti dribnodyspersnykh poroshkiv na osnovi Fe і Fe3O4. Bulletin of Donetsk National University. Series A: Natural Sciences, 14 (1), 169–173.
  25. Gorobets, S. V., Gorobets, O. Y., Demianenko, I. V., Nikolaenko, R. N. (2013). Self-organization of magnetite nanoparticles in providing Saccharomyces cerevisiae Yeasts with magnetic properties. Journal of Magnetism and Magnetic Materials, 337-338, 53–57. doi: 10.1016/j.jmmm.2013.01.004
  26. Gorobets, S. V., Ukrayinets, A. I., Gulyy, I. S. et. al. (2000). Eksperymentalne doslidzhennya rukhu Sach. cerevisiae ta dribnodyspersnykh chastynok v okoli feromahnitnykh nasadok u postiynomu mahnitnomu poli. Kharchova promyslovist, 45, 149–156.
  27. Gorobets, S. V., Gorobets, Yu., Goyko, І. Yu., Kasatkina, T. P. (2004). Intensification of the extraction process of copper and chromium (vi) ions from the solutions in a magnetic field. Functional Materials, 11 (4), 793–797.




How to Cite

Gorobets, S., & Karpenko, Y. (2017). The development of a magnetically operated biosorbent based on the yeast saccharomyces cerevisiae for removing copper cations Cu2+. Eastern-European Journal of Enterprise Technologies, 1(6 (85), 28–34.



Technology organic and inorganic substances