The development of a magnetically operated biosorbent based on the yeast saccharomyces cerevisiae for removing copper cations Cu2+
DOI:
https://doi.org/10.15587/1729-4061.2017.91390Keywords:
magnetic fluid, magnetohydrodynamic stirring, magnetically operated biosorbent, biosorption, magnetic susceptibilityAbstract
The study has revealed that the process of obtaining a magnetically operated biosorbent depends on the medium pH, the strength of the permanent magnetic field of the installation for multivortical MHD stirring, the ratio of the mass of the nanosized magnetite to the yeast S. cerevisiae, and the process duration. The isotherms of copper cations sorption by magnetically operated biosorbents were obtained depending on the production duration. Tests were conducted to determine the magnetic susceptibility of the magnetically operated biosorbents.
The experiment results provide conclusions on the optimal parameters of the magnetically operated biosorbent production in terms of biosorption characteristics.
The study has disclosed an optimal magnetically operated biosorbent of copper cations based on the yeast S. cerevisiae under the following parameters of the production process: the external permanent magnetic field – 240 kA/m, the medium pH=2.5 with adding nitric acid according to previous studies, the ratio of the magnetite Fe3O4 to the yeast biomass – 1 % w/w, the duration of preparing the sorbent – 2 minutes, and the maximum sorption capacity – 25.5±0.5 mg Cu2+/g of the biosorbent dry mass.
The conducted tests have proved an opportunity to make biosorption by the yeast S. cerevisiae, and it is possible to remove the waste biosorbent by high gradient magnetic separation. The optimal conditions of production and the effectiveness of both the sorption capacity and the magnetic susceptibility make it possible to develop an efficient technology of wastewater cleaning from heavy metal cations.References
- Wang, J., Chen, C. (2009). Biosorbents for heavy metals removal and their future. Biotechnology Advances, 27 (2), 195–226. doi: 10.1016/j.biotechadv.2008.11.002
- Azevedo, R. B., Silva, L. P., Lemos, A. P. C., Bao, S. N., Lacava, Z. G. M., Safarik, I. et. al. (2003). Morphological study of saccharomyces cerevisiae cells treated with magnetic fluid. IEEE Transactions on Magnetics, 39 (5), 2660–2662. doi: 10.1109/tmag.2003.815547
- Safarik, I., Safarikova, M. (2007). Magnetically modified microbial cells: A new type of magnetic adsorbents. China Particuology, 5 (1-2), 19–25. doi: 10.1016/j.cpart.2006.12.003
- Jianlong, W. (2002). Biosorption of copper(II) by chemically modified biomass of Saccharomyces cerevisiae. Process Biochemistry, 37 (8), 847–850. doi: 10.1016/s0032-9592(01)00284-9
- Yu, J.-X., Wang, L.-Y., Chi, R.-A., Zhang, Y.-F., Xu, Z.-G., Guo, J. (2012). A simple method to prepare magnetic modified beer yeast and its application for cationic dye adsorption. Environmental Science and Pollution Research, 20 (1), 543–551. doi: 10.1007/s11356-012-0903-3
- Yang, S. H., Lee, T., Seo, E., Ko, E. H., Choi, I. S., Kim, B.-S. (2011). Interfacing Living Yeast Cells with Graphene Oxide Nanosheaths. Macromolecular Bioscience, 12 (1), 61–66. doi: 10.1002/mabi.201100268
- Morais, J. P. M. G., Azevedo, R. B., Silva, L. P., Lacava, Z. G. M., Bao, S. N., Silva, O. et. al. (2004). Magnetic resonance investigation of magnetic–labeled baker’s yeast cells. Journal of Magnetism and Magnetic Materials, 272-276, 2400–2401. doi: 10.1016/j.jmmm.2003.12.998
- Gorobets, S., Gorobets, O., Goyko, I., Mazur, S. (2004). Magnetohydrodynamic mixer of an electrolyte solution. Physica Status Solidi (c), 1 (12), 3455–3457. doi: 10.1002/pssc.200405478
- Gorobets, S. V., Karpenko, Yu. V., Marinchenko, L. V. (2010). Vikoristannya magnitokerovanih drizhdzhiv S. serevisiae dlya viluchennya ioniv midi. Bulletin of Donetsk National University. Series A: Natural Sciences, 14 (1), 230–236.
- Wang, J., Chen, C. (2006). Biosorption of heavy metals by Saccharomyces cerevisiae: A review. Biotechnology Advances, 24 (5), 427–451. doi: 10.1016/j.biotechadv.2006.03.001
- Santoso, U. T., Rodiansono, R., Junaidi, A. B., Umaningrum, D. (2015). Synthesis of Chitosan-Coated Magnetic Microparticle Using Glutaraldehyde as Crosslinker and PEG as Spacer Arm and Its Application as Adsorbent of Peat Humic Acid. Journal of Wetlands Environmental Management, 3 (1), 22–27.
- Peng, Q., Liu, Y., Zeng, G., Xu, W., Yang, C., Zhang, J. (2010). Biosorption of copper(II) by immobilizing Saccharomyces cerevisiae on the surface of chitosan-coated magnetic nanoparticles from aqueous solution. Journal of Hazardous Materials, 177 (1-3), 676–682. doi: 10.1016/j.jhazmat.2009.12.084
- Song, R., Bai, B., Puma, G. L., Wang, H., Suo, Y. (2015). Biosorption of azo dyes by raspberry-like Fe3O4@yeast magnetic microspheres and their efficient regeneration using heterogeneous Fenton-like catalytic processes over an up-flow packed reactor. Reaction Kinetics, Mechanisms and Catalysis, 115 (2), 547–562. doi: 10.1007/s11144-015-0854-z
- Li, T., Liu, Y., Peng, Q., Hu, X., Liao, T., Wang, H., Lu, M. (2013). Removal of lead(II) from aqueous solution with ethylenediamine-modified yeast biomass coated with magnetic chitosan microparticles: Kinetic and equilibrium modeling. Chemical Engineering Journal, 214, 189–197. doi: 10.1016/j.cej.2012.10.055
- Berovic, M., Berlot, M., Kralj, S., Makovec, D. (2014). A new method for the rapid separation of magnetized yeast in sparkling wine. Biochemical Engineering Journal, 88, 77–84. doi: 10.1016/j.bej.2014.03.014
- Xu, M., Zhang, Y., Zhang, Z., Shen, Y., Zhao, M., Pan, G. (2011). Study on the adsorption of Ca2+, Cd2+ and Pb2+ by magnetic Fe3O4 yeast treated with EDTA dianhydride. Chemical Engineering Journal, 168 (2), 737–745. doi: 10.1016/j.cej.2011.01.069
- Bau, H. H., Zhong, J., Yi, M. (2001). A minute magneto hydro dynamic (MHD) mixer. Sensors and Actuators B: Chemical, 79 (2-3), 207–215. doi: 10.1016/s0925-4005(01)00851-6
- Marques, P. A. S. S., Rosa, M. F., Pinheiro, H. M. (2000). pH effects on the removal of Cu2+, Cd2+ and Pb2+ from aqueous solution by waste brewery biomass. Bioprocess Engineering, 23 (2), 135–141. doi: 10.1007/pl00009118
- Gorobec', S. V., Karpenko, Ju. V. (2013). Vzajemozv’jazok elektroforetychnoi' ruhlyvosti magnitokerovanogo biosorbentu i jogo sorbcijnoi' jemnosti. Water treatment technologies technical, biological and ecological aspects. Kyiv: NTUU “KPI”, 69.
- Nishida, K., Silver, P. A.; Gray, J. V. (Ed.) (2012). Induction of Biogenic Magnetization and Redox Control by a Component of the Target of Rapamycin Complex 1 Signaling Pathway. PLoS Biology, 10 (2), e1001269. doi: 10.1371/journal.pbio.1001269
- Gorobets, S. V., Karpenko, Y. V. (2009). Intensification of sorption ability of yeast S. cerevisiae using multivortical magnetohydrodynamic mixing. Elektronyka y sviaz, 1 (2-3), 191–195.
- Gorobets, S. V., Gorobets, O. Y., Dvoynenko, O. K., Mykhailenko, N. O. (2010). Wastewater purification from cuprum (II) ions by magnetically operated biosorbent using high–gradient ferromagnetic fields. Research Bulletin of NTUU "Kyiv Polytechnic Institute", 3, 21–25.
- Sluiter, A., Hames, B., Hyman, D. et. al. (2008). Determination of total solids in biomass and total dissolved solids in liquid process samples. National Renewable Energy Laboratory, 1–6.
- Dvoynenko, O. K., Gorobets, S. V., Kuznetsov Y. O., Gorobets, O. Y. (2010). Doslidzhennya mahnitnoyi spryynyatlyvosti dribnodyspersnykh poroshkiv na osnovi Fe і Fe3O4. Bulletin of Donetsk National University. Series A: Natural Sciences, 14 (1), 169–173.
- Gorobets, S. V., Gorobets, O. Y., Demianenko, I. V., Nikolaenko, R. N. (2013). Self-organization of magnetite nanoparticles in providing Saccharomyces cerevisiae Yeasts with magnetic properties. Journal of Magnetism and Magnetic Materials, 337-338, 53–57. doi: 10.1016/j.jmmm.2013.01.004
- Gorobets, S. V., Ukrayinets, A. I., Gulyy, I. S. et. al. (2000). Eksperymentalne doslidzhennya rukhu Sach. cerevisiae ta dribnodyspersnykh chastynok v okoli feromahnitnykh nasadok u postiynomu mahnitnomu poli. Kharchova promyslovist, 45, 149–156.
- Gorobets, S. V., Gorobets, Yu., Goyko, І. Yu., Kasatkina, T. P. (2004). Intensification of the extraction process of copper and chromium (vi) ions from the solutions in a magnetic field. Functional Materials, 11 (4), 793–797.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2017 Svitlana Gorobets, Yuriy Karpenko
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.
A license agreement is a document in which the author warrants that he/she owns all copyright for the work (manuscript, article, etc.).
The authors, signing the License Agreement with TECHNOLOGY CENTER PC, have all rights to the further use of their work, provided that they link to our edition in which the work was published.
According to the terms of the License Agreement, the Publisher TECHNOLOGY CENTER PC does not take away your copyrights and receives permission from the authors to use and dissemination of the publication through the world's scientific resources (own electronic resources, scientometric databases, repositories, libraries, etc.).
In the absence of a signed License Agreement or in the absence of this agreement of identifiers allowing to identify the identity of the author, the editors have no right to work with the manuscript.
It is important to remember that there is another type of agreement between authors and publishers – when copyright is transferred from the authors to the publisher. In this case, the authors lose ownership of their work and may not use it in any way.