Examining quality of material for the synthesis of photonic crystals by the method of sedimentation analysis

Authors

DOI:

https://doi.org/10.15587/1729-4061.2017.91821

Keywords:

photonic crystal, tetraethoxysilane, sedimentation, torsion scales, spherical particles, the Stöber method

Abstract

A problem of using tetraethoxysilane with different storage periods as a raw material in the production of photonic crystals is examined. Present work is conducted for the purpose of reducing expenditures for the synthesis of photonic crystals. By comparing the results of modeling and experimental data, we substantiated the feasibility of sedimentation quality control of material for the synthesis of photonic crystals. The given method provides for an error in determining variation coefficient in the diameter of particles not exceeding 1.5 %. We have proven an unambiguous dependence between the shape of sedimentation curves and quality of the fractional composition of suspension for the synthesis of photonic crystals.

A practical feasibility of this method is confirmed based on the example of using tetraethoxysilane with different storage periods. It was established that the boundary period of storage of purified tetraethoxysilane is 96 hours. Exceeding this period leads to the formation of particles with variation coefficient in their diameter larger than 6 %. The latter is unacceptable in the production of photonic crystals. Obtained data make it possible to increase the periods between fractional distillation of tetraethoxysilane to 96 hours. This will lead to a decrease in costs in the production of photonic crystals and will improve economic efficiency in the industry.

Author Biographies

Yriy Taranenko, Ukrainian State University of Chemical Technology Gagarina ave., 8, Dnipro, Ukraine, 49005

Doctor of Technical Sciences, Professor

Department of Computer Integrated Technology and Metrology

Igor Кayun, Ukrainian State University of Chemical Technology Gagarina ave., 8, Dnipro, Ukraine, 49005

Doctor of Technical Sciences, Professor

Department of Computer Integrated Technology and Metrology

Oleg Mysov, Ukrainian State University of Chemical Technology Gagarina ave., 8, Dnipro, Ukraine, 49005

PhD, Associate Professor

Department of Computer Integrated Technology and Metrology

References

  1. Woldering, L. A., Tjerkstra, R. W., Vos, W. L. (2011). Photonic Crystal Fabrication. Encyclopedia of Materials: Science and Technology, 1–5. doi: 10.1016/b978-0-08-043152-9.02228-4
  2. Jiang, P., Bertone, J. F., Hwang, K. S., Colvin, V. L. (1999). Single-Crystal Colloidal Multilayers of Controlled Thickness. Chemistry of Materials, 11 (8), 2132–2140. doi: 10.1021/cm990080+
  3. Zhokhov, A. A., Masalov, V. M., Sukhinina, N. S., Matveev, D. V., Dolganov, P. V., Dolganov, V. K., Emelchenko, G. A. (2015). Photonic crystal microspheres. Optical Materials, 49, 208–212. doi: 10.1016/j.optmat.2015.09.019
  4. Plumere, N., Ruff, A., Speiser, B., Feldmann, V., Mayer, H. A. (2012). Stöber silica particles as basis for redox modifications: Particle shape, size, polydispersity, and porosity. Journal of Colloid and Interface Science, 368 (1), 208–219. doi: 10.1016/j.jcis.2011.10.070
  5. Arantes, T. M., Pinto, A. H., Leite, E. R., Longo, E., Camargo, E. R. (2012). Synthesis and optimization of colloidal silica nanoparticles and their functionalization with methacrylic acid. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 415, 209–217. doi: 10.1016/j.colsurfa.2012.09.041
  6. Santamaria Razo, D. A., Pallavidino, L., Garrone, E., Geobaldo, F., Descrovi, E., Chiodoni, A., Giorgis, F. (2008). A version of Stober synthesis enabling the facile prediction of silica nanospheres size for the fabrication of opal photonic crystals. Journal of Nanoparticle Research, 10 (7), 1225–1229. doi: 10.1007/s11051-008-9373-4
  7. Tadanaga, K., Morita, K., Mori, K., Tatsumisago, M. (2013). Synthesis of monodispersed silica nanoparticles with high concentration by the Stöber process. Journal of Sol-Gel Science and Technology, 68 (2), 341–345. doi: 10.1007/s10971-013-3175-6
  8. Gao, W., Rigout, M., Owens, H. (2016). Facile control of silica nanoparticles using a novel solvent varying method for the fabrication of artificial opal photonic crystals. Journal of Nanoparticle Research, 18 (12). doi: 10.1007/s11051-016-3691-8
  9. Masalov, V. M., Sukhinina, N. S., Emel’chenko, G. A. (2011). Colloidal particles of silicon dioxide for the formation of opal-like structures. Physics of the Solid State, 53 (6), 1135–1139. doi: 10.1134/s1063783411060229
  10. Grinberg, E. E., Amelina, A. E., Kuznecov, A. I., Levin, Ju. I., Kotov, D. V., Rjabenko, E. A. (2013). Pat. No. 2537302 RU. Sposob ochistki tetrajetoksisilana. MPK7 C07F7/04, C07F7/20. No. 2013140008/04; declareted: 29.08.2013; published: 27.12.2014, Bul. No. 36, 6.
  11. Trohimova, E. Ju., Aleksenskij, A. E., Grudinkin, S. A., Korkin, I. V., Kurdjukov, D. A., Golubev, V. G. (2011). Vlijanie predvaritel'noj obrabotki tetrajetoksisilana na sintez kolloidnyh chastic amorfnogo dioksida kremnija. Kolloidnyj zhurnal, 73 (4), 535–539.
  12. Potapov, V. V., Kamashev, D. V. (2006). Sintez blagorodnogo opala v gidrotermal'nom rastvore. Fizika i himija stekla, 32 (1), 124–136.
  13. Baryshev, A. V., Kaplyanskii, A. A., Kosobukin, V. A., Samusev, K. B., Usvyat, D. E., Limonov, M. F. (2004). Photonic band-gap structure: From spectroscopy towards visualization. Physical Review B, 70 (11). doi: 10.1103/physrevb.70.113104
  14. Gupalo, Ju. P. (1962). O nekotoryh zakonomernostjah psevdoozhizhennogo sloja i stesnennogo padenija. Inzhenerno-fizicheskij zhurnal, 5 (2), 96–99.
  15. Ratnikov, V. V. (1997). Opredelenie poristosti sinteticheskih opalov i poristogo kremnija rentgenovskim metodom. Fizika tverdogo tela, 39 (5), 956–958.

Downloads

Published

2017-02-17

How to Cite

Taranenko, Y., Кayun I., & Mysov, O. (2017). Examining quality of material for the synthesis of photonic crystals by the method of sedimentation analysis. Eastern-European Journal of Enterprise Technologies, 1(6 (85), 35–41. https://doi.org/10.15587/1729-4061.2017.91821

Issue

Section

Technology organic and inorganic substances