Development of micellar system for the decontamination of organophosphorus compounds to clean technological equipment

Authors

DOI:

https://doi.org/10.15587/1729-4061.2017.92034

Keywords:

decontamination, micellar system, organophosphorus compounds, cleaning of technological equipment, quality risks

Abstract

An analysis of composition of commercially available cleaning products, used in pharmaceutical enterprises today, was carried out, based on which it was found that they do not guarantee effective cleaning of equipment from organophosphorus compounds. It was concluded that the development of new composition of the cleaning agent, which effectively decontaminates organophosphorus compounds from surfaces of the equipment, is a pressing issue for ecologically safe manufacture of products containing substances of organophosphorus nature.

A new system of micellar inactivation of active pharmaceutical ingredients of organophosphorus nature was developed. We conducted a study into the destruction of methylparathion by using the micellar system, which includes water, cetylpyridine chloride, hydrogen peroxide and boric acid. A concentration of cetylpyridine chloride, at which the largest constant of first-order reaction rate occurred, was established. It is shown that adding the activator, boric acid, increases the reaction rate by 2.5 times.

Based on these studies, the composition of a model cleaning agent for cleaning technological equipment was proposed. An assessment of internal risks for quality of production stations when producing medicinal agent based on organophosphorus compounds in the form of eye drops was carried out. Production station was given the highest rating of internal risk – 3.

We carried out an analysis of risks for cleaning reactor for preparing solutions RVD-630 in case of using the micellar system developed to decontaminate from residues of active pharmaceutical ingredients of organophosphorus nature.

The obtained results might be used for devising the concept of validation of cleaning the reactor in the preparation of solutions. This is an important step in providing cleanliness of technological equipment under conditions of producing medicines based on organophosphorus compounds as active pharmaceutical ingredients at operating pharmaceutical enterprises.

Author Biographies

Volodymyr Bessarabov, Kyiv National University of Technology and Design Nemirovich-Danchenko str., 2, Kyiv, Ukraine, 01011

PhD, Associate Professor

Department of Industrial Pharmacy

Lubov Vakhitova, National Academy of Sciences of Ukraine Kharkivske shosse str., 50, Kyiv, Ukraine, 02160

PhD

Galina Kuzmina, Kyiv National University of Technology and Design Nemirovich-Danchenko str., 2, Kyiv, Ukraine, 01011

PhD, Associate Professor

Department of Industrial Pharmacy

Glib Zagoriy, Kyiv National University of Technologies and Design Nemirovich-Danchenko str., 2, Kyiv, Ukraine, 01011

Doctor of Pharmaceutical Sciences, Professor

Department of Industrial Pharmacy

Olga Baula, Kyiv National University of Technology and Design Nemirovich-Danchenko str., 2, Kyiv, Ukraine, 01011

PhD, Associate Professor

Department of Industrial Pharmacy

References

  1. Rans'kyj, A. P., Petruk, R. V. (2012). Pat. No. 69634 UA. Sposib pererobky vysokotoksychnogo fosforovmisnogo pestycydnogo preparatu dymetoat. MPK B09B 3/00. No. u201111880; declareted: 10.10.2011; published: 10.05.2012, Bul. No. 9.
  2. Bessarabov, V. I., Vahitova, L. M., Kuz'mina, G. I., Baula, O. P., Pal'chevs'ka, T. A., Matvijenko, K. V. et. al. (2016) Okysnjuval'ni vlastyvosti peroksydu vodnju v systemah dekontaminacii' zastarilyh fosfororganichnyh pestycydiv. Himichna promyslovist' Ukrai'ny, 5-6, 74–78.
  3. Vahitova, L. N., Matvienko, K. V., Taran, N. A., Rybak, V. V., Burdina, Ja. F. (2014). Kineticheskaja model' reakcij gidroliza i pergidroliza paraoksona v mikrojemul'sii. Naukovi praci DonNTU. Serija: Himija i himichna tehnologija, 2 (23), 121–127.
  4. Vahitova, L. N., Matvienko, K. V., Skrypka, A. V., Lahtarenko, N. V. (2010). Nukleofil'naja reakcionnaja sposobnost' peroksid-aniona v mikrojemul'sijah tipa "maslo v vode" v processah razlozhenija jefirov fosfornoj i toluolsul'fonovoj kislot. Teoreticheskaja i jeksperimental'naja himija, 46 (1), 1–7.
  5. Vakhitova, L. N., Lakhtarenko, N. V., Popov, A. F. (2015). Kinetics of the Oxidation of Methyl Phenyl Sulfide by Peroxoborate Anions. Theoretical and Experimental Chemistry, 51 (5), 307–313. doi: 10.1007/s11237-015-9430-x
  6. Eddleston, M., Buckley, N. A., Eyer, P., Dawson, A. H. (2008). Management of acute organophosphorus pesticide poisoning. The Lancet, 371 (9612), 597–607. doi: 10.1016/s0140-6736(07)61202-1
  7. Holstov, V. I. (2010). Himicheskoe razoruzhenie. Praktika obespechenija vypolnenija konvencionnyh objazatel'stv po zapreshheniju himicheskogo oruzhija i ego unichtozheniju. Rossijskij himicheskij zhurnal, LIV (4), 5–9.
  8. Chemical Stockpile Disposal Program (2003). Parsons. Available at: https://www.parsons.com/Media%20Library/0903_CSDP.pdf
  9. Efremenko, E. N., Zav'jalova, N. V. et. al. (2010). Jekologicheski bezopasnaja biodegradacija reakcionnyh mass, obrazujushhihsja pri unichtozhenii fosfororganicheskih otravljajushhih veshhestv. Zh. Ros. him. Ob-va im. D. I. Mendeleeva, 54 (4), 19–24.
  10. Wong, K.-Y., Gao, J. (2007). The Reaction Mechanism of Paraoxon Hydrolysis by Phosphotriesterase from Combined QM/MM Simulations. Biochemistry, 46 (46), 13352–13369. doi: 10.1021/bi700460c
  11. Model systems in hydrolysis of organophosphates. Available at: http://uir.unisa.ac.za/bitstream/handle/10500/1252/02dissertation.pdf?sequence=1
  12. Kim, K., Tsay, O. G., Atwood, D. A., Churchill, D. G. (2011). Destruction and Detection of Chemical Warfare Agents. Chemical Reviews, 111 (9), 5345–5403. doi: 10.1021/cr100193y
  13. Singh, B., Prasad, G., Pandey, K., Danikhel, R., Vijayaraghavan, R. (2010). Decontamination of Chemical Warfare Agents. Defence Science Journal, 60 (4), 428–441. doi: 10.14429/dsj.60.487
  14. Compilation of Community Procedures on Inspections and Exchange of Information (2014). European Commission Health &consumer protection directorate-general, 253.
  15. LeBlanc, D. A. (2000). Vаlidated cleaning technologies for pharmaceutical manufacturing. CRC Press, 289. doi: 10.1201/b14410
  16. Konstrukcija sistem CIP/SIP i ih sravnenie s sistemami COP/SOP. Eshhe bol'she podrobnostej o steril'nom proizvodstve (2014). Farmacevticheskaja otrasl', 4 (45), 96–100. Available at: http://promoboz.com/uploads/articles/87.pdf
  17. ArtLajf-Tehno. Available at: http://www.artlife-techno.ru/

Downloads

Published

2017-02-17

How to Cite

Bessarabov, V., Vakhitova, L., Kuzmina, G., Zagoriy, G., & Baula, O. (2017). Development of micellar system for the decontamination of organophosphorus compounds to clean technological equipment. Eastern-European Journal of Enterprise Technologies, 1(6 (85), 42–49. https://doi.org/10.15587/1729-4061.2017.92034

Issue

Section

Technology organic and inorganic substances