Development and application of computer model to study the modes of dynamic loading in mechanical oscillatory systems

Authors

DOI:

https://doi.org/10.15587/1729-4061.2017.92202

Keywords:

simulation Simulink model, dynamic loading, analog modeling, mechanical oscillatory system

Abstract

A simulation computer model was developed with a view to conducting the simulation of modes of dynamic loading of mechanical oscillatory systems of the single-stage evolvent helical tooth gears class. The model implementation was carried out by means of the MatLAB-Simulink simulation environment, based on the principles of analog simulation. Schematics of the computer simulation model and the generator of external loading functions were presented. Internal structure of the block for solving one of the equations of mathematical model in mechanical oscillatory systems was established.

In the course of modeling experiment, we performed simulation of the modes of dynamic tooth gear loading by force, the loading moment of which is simulated by the function of stepwise or linear-increasing character. Results of the simulation results were obtained in the form of combined oscillograms of the alternating moment of external loading and reactions in the form of oscillations of one of the elements of the tooth gear structure. The simulation was carried out with the assigned values of weight and rigidity, damping, geometric, structural and dynamic parameters of mechanical oscillatory systems. Obtained experimental results allow assessing the values of dynamic forces in tooth gear nodes depending on the ratio of rotation periods of the shaft, and function of changing the external loading moment, subject to the action of stepwise and linear-alternating forms of the force.

Author Biographies

Petr Dyachenko, Cherkasy State Technological University Shevchenka blvd., 460, Cherkasy, Ukraine, 18006

PhD, Associate Professor

Department of Computer Science and Information Technology Management

Maryna Chychuzhko, Cherkasy State Technological University Shevchenka blvd., 460, Cherkasy, Ukraine, 18006

PhD, Associate Professor

Department of Specialized Computer Systems 

Ali Al-Ammouri, National Transport University Suvorova str., 1, Kyiv, Ukraine, 01010

Doctor of Technical Scienсes, Professor

Department of Electronics and Computer Science

References

  1. GOST 21354-87. Peredachi zubchatye cilindricheskie jevol'ventnye vneshnego zaceplenija. Raschet na prochnost' (1988). Moscow: Izd-vo standartov, 127.
  2. Dimentberg, F. M., Kolesnikov, K. S. (1980). Vibracii v tehnike. Vol. 3. Moscow: Mashinostroenie, 544.
  3. Porshnev, S. (2003). Komp'juternoe modelirovanie fizicheskih processov v pakete MATLAB. Moscow: Gorjachaja Linija – Telekom, 592.
  4. Stepanov, V. I., Klebanov, M. K. (1984). Ispol'zovanie preobrazovannyh topologicheskih modelej uprugih sistem metallorezhushhih stankov v zadachah dinamiki. Izvestija VUZov. Mashinostroenie, 10, 139–143.
  5. Kalashnikov, V. V. (1982). Organizacija modelirovanija slozhnyh sistem. Moscow: Znanie, 200.
  6. Francesco, M., Rudolf, G. (2007). Time-fractional derivatives in relaxation processes: a tutorial survey. Fractional Calculus and Applied Analysis, 10 (3), 269–308.
  7. Poluhin, P. I., Fedosov, N. M., Korolev, A. A. (1982). Prokatnoe proizvodstvo. Moscow: Metallurgija, 696.
  8. Billings, S. A. (2013). Nonlinear System Identification: NARMAX Methods in the Time, Frequency, and Spatio-Temporal Domains. New York: Wiley, 574. doi: 10.1002/9781118535561
  9. Ferfecki, P., Zapomel, J., Kozanek, J. (2017). Analysis of the vibration attenuation of rotors supported by magnetorheological squeeze film dampers as a multiphysical finite element problem. Advances in Engineering Software, 104, 1–11. doi: 10.1016/j.advengsoft.2016.11.001
  10. Menshykov, O. V., Menshykova, M. V., Guz, I. A. (2012). 3-D elastodynamic contact problem for an interface crack under harmonic loading. Engineering Fracture Mechanics, 80, 52–59. doi: 10.1016/j.engfracmech.2010.12.010
  11. Zerbst, U., Madia, M., Beier, H. T. (2014). A model for fracture mechanics based prediction of the fatigue strength: Further validation and limitations. Engineering Fracture Mechanics, 130, 65–74. doi: 10.1016/j.engfracmech.2013.12.005
  12. Smolin, A. Y., Roman, N. V., Konovalenko, I. S., Eremina, G. M., Buyakova, S. P., Psakhie, S. G. (2014). 3D simulation of dependence of mechanical properties of porous ceramics on porosity. Engineering Fracture Mechanics, 130, 53–64. doi: 10.1016/j.engfracmech.2014.04.001
  13. sakhie, S. G., Shilko, E. V., Grigoriev, A. S., Astafurov, S. V., Dimaki, A. V., Smolin, A. Y. (2014). A mathematical model of particle-particle interaction for discrete element based modeling of deformation and fracture of heterogeneous elastic-plastic materials. Engineering Fracture Mechanics, 130, 96–115. doi: 10.1016/j.engfracmech.2014.04.034
  14. Gursky, V., Kuzio, I. (2016). Strength and durability analysis of a flat spring at vibro-impact loadings. Eastern-European Journal of Enterprise Technologies, 5 (7 (83)), 4–10. doi: 10.15587/1729-4061.2016.79910
  15. Aguiar, R. R., Weber, H. I. (2012). Impact Force Magnitude Analysis of an Impact Pendulum Suspended in a Vibrating Structure. Shock and Vibration, 19 (6), 1359–1372. doi: 10.1155/2012/641781
  16. Djachenko, P. V. (2012). Prostorova matematychna model' vlasnyh chastot ta form kolyvan' mehanichnoi' systemy, klasu odnostupinchastyh, evol'ventnyh zubchastyh peredach. Shtuchnyj intelekt, 1, 54–60.
  17. Anshin, S. S., Babich, A. V. (1989). Proektirovanie i razrabotka promyshlennyh robotov. Moscow: Mashinostroenie, 272.
  18. Feucht, D. L. (1990). Handbook of Analog Circuit Design. Elsevier Science, 702.
  19. Chernyh, I. V. (2008). Modelirovanie jelektrotehnicheskih ustrojstv v MATLAB, SimPowerSystems i Simulink. Moscow: DMK Press, 288.
  20. Djebni, Dzh., Harman, T. (2003). Simulink 4. Sekrety masterstva. Moscow: Binom, 404.
  21. Houpis, C. H., Sheldon, S. N. (2013). Linear Control System Analysis and Design with MATLAB. Automation and Control Engineering. CRC Press, 729.
  22. Downey, A. B. (2008). Physical Modeling in MATLAB. CreateSpase, 160.
  23. Ong, C.-M. (1977). Dynamic Simulation of Electrical Machinery using Matlab-Simulink. Prentice-Hall, 688.

Downloads

Published

2017-02-28

How to Cite

Dyachenko, P., Chychuzhko, M., & Al-Ammouri, A. (2017). Development and application of computer model to study the modes of dynamic loading in mechanical oscillatory systems. Eastern-European Journal of Enterprise Technologies, 1(1 (85), 42–49. https://doi.org/10.15587/1729-4061.2017.92202

Issue

Section

Engineering technological systems