The effect of methods of eliminating spikes in the time series of freight flows on their statistical characteristics

Authors

DOI:

https://doi.org/10.15587/1729-4061.2017.92528

Keywords:

freight flow, time series, statistical characteristics, abnormal spikes, trend, supply volume

Abstract

Types of the data aggregate spikes of the time series were analyzed taking as an example the incoming freight flows at the industrial enterprise. Effect of the method of correction of abnormal series levels on its quantitative characteristics and the trend component was established. The ranges of deviation from the mean value of actual data were determined. Decrease in dispersion for one-step correction up to 20 % and up to 99 % for iterative correction was determined. It was established that the degree of correlation of the time series levels weakly reacts to the method of correction of abnormal values. Methods of elimination of the trend and cyclic components by iterative correction of abnormal observations by means of different estimators were considered. As a result of partial robust processing of abnormal values, an updated time series was obtained/ This time series can be used further for modeling and predicting indicators studied for different systems. It was established that the remaining parts of the deterministic actual series accumulate in themselves about 75 % of dispersion of the actual series for one-step correction and 54 % for iterative correction. On average, 6 % of the actual series dispersion is the share of the trend for all methods of correction (except VOS and MO). 

Author Biographies

Sergey Gritsay, Zaporizhzhya national technical university Zhukovsky str., 64, Zaporizhzhia, Ukraine, 69093

Senior Lecturer

Department of Transport Technology

Alexandr Lashchenykh, Zaporizhzhya national technical university Zhukovsky str., 64, Zaporizhzhia, Ukraine, 69093

PhD, Associate Professor

Department of Transport Technology

Serhii Turpak, Zaporizhzhya national technical university Zhukovsky str., 64, Zaporizhzhia, Ukraine, 69093

Doctor of Technical Sciences, Associate Professor

Department of Transport Technology

 

Elena Ostroglyad, Zaporizhzhya national technical university Zhukovsky str., 64, Zaporizhzhia, Ukraine, 69093

Postgraduate student

Department of Transport Technology

Tamara Kharchenko, Zaporizhzhya national technical university Zhukovsky str., 64, Zaporizhzhia, Ukraine, 69093

Senior Lecturer

Department of Transport Technology

References

  1. Buchackaja, V. V. (2013). Obrabotka anomal'nyh znachenij urovnej vremennogo rjada kak jetap kompleksnoj ocenki informacii v podsisteme prognozirovanija dlja situacionnogo centra. Vestnik Adygejskogo gosudarstvennogo universiteta, 3 (122), 98–102.
  2. Kuzovlev, V. I., Orlov, A. O. (2012). Metod vyjavlenija anomalij v ishodnyh dannyh pri postroenii prognoznoj modeli reshajushhego dereva v sistemah podderzhki prinjatija reshenij. Nauka i obrazovanie: MGTU im. N. Je. Baumana, 9, 209–218.
  3. Churakova, I. Ju. (2010). Napravlenija ispol'zovanija metodik vyjavlenija anomal'nyh nabljudenij pri reshenii zadach operacionnogo menedzhmenta. Nauchnyj doklad No. 13 (R). Sankt-Peterburg: VShM SPbGU.
  4. Gubanov, V. A. (2014). Analiz vozdejstvija vybrosov na rezul'tat sezonnoj korrektirovki vremennyh rjadov. Nauchnye trudy: Institut narodnohozjajstvennogo prognozirovanija RAN, 2, 210–220.
  5. Gubanov, V. I., Koval'dzhi, A. K. (2001). Vydelenie sezonnyh kolebanij na osnove variacionnyh principov. EMM, 37 (1), 91–102.
  6. Dror, S. (2010). A methodology for realignment of quality cost elements. Journal of Modelling in Management, 5 (2), 142–157. doi: 10.1108/17465661011060998
  7. Burke, S. (1998). Missing values, Outliers, Robust Statistics and Non Parametric methods. VAM Bulletin, 19, 22–27.
  8. McDonald, B. A. (2002). Teaching Note on Cook’s Distance – A Guideline. Res. Lett. Inf. Math. Sci., 3, 127–128.
  9. Muller, K. E., Mok, M. C. (1977). The distribution of cook's d statistic. Communications in Statistics – Theory and Methods, 26 (3), 525–546. doi: 10.1080/03610927708831932
  10. Penny, K. I. (1996). Appropriate Critical Values When Testing for a Single Multivariate Outlier by Using the Mahalanobis Distance. Applied Statistics, 45 (1), 73. doi: 10.2307/2986224
  11. Rawlings, J. O., Pentula, S. G., Dickey, D. A. (Eds.) (1998). Applied regression analysis: A research tool. New York: Springer, 659. doi: 10.1007/b98890
  12. Cohen, J., Cohen, P., West, S. G., Aiken, L. S. (2002). Applied multiple regression/correlation analysis for the behavioral sciences. Mahwah, New Jersey, London: Lawrence Erlbaum Associates, 736. doi: 10.4324/9780203774441
  13. Ershov, A. A. (1978). Stabil'nye metody ocenki parametrov. Avtomatika i telemehanika, 8, 66–100.
  14. Marchuk, V. I., Tokareva, S. V. (2009). Sposoby obnaruzhenija anomal'nyh znachenij pri analize nestacionarnyh sluchajnyh processov. Shahty: JuRGUJeS, 209.
  15. Turpak, S. M. (2015). Intelligent control system of railway transport at metallurgical plants. Teka. Commission of motorization and energetics in agriculture, 15 (4), 53–60.
  16. Turpak, S., Gritcay, S., Ostrohlyad, E. (2016). Logistics of raw materials supply for the ferroalloy industry. Metallurgical and Mining Industry, 10, 16–23.
  17. Lashenyh, A., Turpak, S., Gritcay, S., Vasileva, L., Ostrohlyad, E. (2016). Development of mathematical models for planning the duration of shunting operations. Eastern-European Journal of Enterprise Technologies, 5 (3 (83)), 40–46. doi: 10.15587/1729-4061.2016.80752

Downloads

Published

2017-02-27

How to Cite

Gritsay, S., Lashchenykh, A., Turpak, S., Ostroglyad, E., & Kharchenko, T. (2017). The effect of methods of eliminating spikes in the time series of freight flows on their statistical characteristics. Eastern-European Journal of Enterprise Technologies, 1(3 (85), 33–39. https://doi.org/10.15587/1729-4061.2017.92528

Issue

Section

Control processes