Formation of leather biostability with the use of cationic polyelectrolytes

Authors

DOI:

https://doi.org/10.15587/1729-4061.2017.96114

Keywords:

leather, cationic polyelectrolyte, polyhexamethyleneguanidine hydrochloride, zeolite, montmorillonite, biocide, antibacterial properties

Abstract

The creation of new preparations with a wide range of biocidal action on the pathogenic microorganisms, long-term protective action and, at the same time, with low toxicity for humans and safe for the environment, is a relevant direction in the development of modern technologies in the production of leather materials.

In the present article we report the results of examining the antibacterial properties of leather, modified with a composition of natural minerals (zeolite, montmorillonite) and polyhexamethyleneguanidine hydrochloride (PHMG-HC) – cationic polyelectrolyte. PHMG-HC is related to the biocides with a wide range of antimicrobial action, it provides surfaces that are treated with a long-lasting bactericidal effect (up to 8 months), which is why it is called a unique biocide with prolonged action. However, up to now, the use of PHMG-HC to provide leather materials with anti-bacterial properties has not been explored.

The research was conducted using the lining leather, impregnated with the dispersed solutions of zeolite and montmorillonite. The modification of leather with PHMG-HC, the substance included in the register of preparations permitted by the EU, was carried out at the stage of after-tanning processes in the production of leather. We propose to use the preparation as a polyfunctional material that fixes the filling and greasing materials in the dermis structure and simultaneously provides it with antibacterial properties.

As a result of research, we established special features of the anti-bacterial properties of leather depending on the treatment of a semi-finished product with the solutions of PHMG-HC at different concentration and the type of mineral filler. It is shown that the examined samples acquire a certain level of biostability when treated with the solution of PHMG-HC at concentration not lower than 2.5 %.

It is determined that the structure of natural minerals and their location in the leather dermis affect the degree of absorption of the biocide by a semi-finished product. It was found that the leather materials, modified with PHMG-HC, exert a pronounced bactericidal effect on the bacteria of the genus Escherichia coli, Pseudomonas aeruginosa, Bacillus subtilis.

Research results demonstrated the possibility of obtaining leather materials with special antibacterial properties when using environmentally safe biocidal preparation (polyhexamethyleneguanidine hydrochloride) and accessible and cheap natural minerals (zeolite, montmorillonite).

Author Biographies

Oksana Kozar, Mukachevo State University Uzhhorodska str., 26, Mukachevo, Ukraine, 89600

PhD student Department of Design and Technology of leather products

Myroslav Sprynskyy, Nicolaus Copernicus University Gagarina str., 7, Torun, Poland, 87-100

Doctor of Chemical Sciences, Assistant Professor

Department of Environmental Chemistry and Bioanalytics

Julia Hrechanyky, Kyiv National University of Technology and Design Nemirovicha-Danchenko str., 2, Kyiv, Ukraine, 01011

Postgraduate student

Department of design and technologies of leather products

Olena Okhmat, Kiev National University of Technologies and Design Nemirovicha-Danchenko str., 2, Kyiv, Ukraine, 01011

PhD, Associate Professors

Department of Biotechnology, Leather and Fur

Katarzyna Lawinska, Institute of Leather Industry Lodz Zgierska str., 73, Lodz, Poland, 91-462

PhD 

Ruslan Rosul, Mukachevo State University Uzhhorodska str., 26, Mukachevo, Ukraine, 89600

PhD, Associate Professors

Department of light industry and vocational education

Valentin Himych, Mukachevo State University Uzhhorodska str., 26, Mukachevo, Ukraine, 89600

PhD, Associate Professors

Department of light industry and vocational education

References

  1. Pekhtasheva, E. L., Nesterov, A. N., Zaykov, H. E., Sof'yna, S. Yu., Deberdeev, R. Ya., Stoyanov, O. V. (2012). Mykrobyolohycheskaya korrozyya y zashchyta ot nee. Vestnyk Kazanskoho tekhnolohycheskoho unyversyteta, 5, 131–134.
  2. Pehtasheva, E. L., Neverov, A. N., Sinizin, N. M. (2002). Die Rolle und Nutzung Mikrobiologischer Prozesse im Lebenszyklus von Materialien unter Besonderer Beruck-sichtigund von textilien. Forum ware, 30 (1-4), 73–76.
  3. Byopovrezhdenyya y metody otsenky byostoykosty materyalov (1988). Moscow: Nauka, Nauchnyy Sovet po byopovrezhdenyyam, 140.
  4. HOST 9.102 ESZKS. Vozdeystvye byolohycheskykh faktorov na tekhnycheskye obekty. Termyny y opredelenyya (1991). Мoscow: Yzd-vo standartov, 7.
  5. Kozar, O. P., Hrechanyk, Yu. V., Petruvs, B. B., Voznyak, B. (2016). Analysis of theoretical premises for biodeterioration of leather materials and leather products. Technology audit and production reserves, 2 (4 (28)), 42–48. doi: 10.15587/2312-8372.2016.65485
  6. Beklemyshev, V. Y., Makhonyn, Y. Y., Maudzhery, U. O. D. (2009). Nanomateryaly y pokrytyya s antymykrobnymy svoystvamy. Nanonauka y nanotekhnolohyy. Entsyklopedyya system zhyzneobespechenyya. UNESCO- EOLSS Encyclopedia. Мoscow: YuNESKO, EOLSS, YD MAHYSTR PRESS, 804–831.
  7. Osnovni vymohy zakonodavstva YeS do bezpeky ta yakosti tovariv. Available at: http://ukraine-eu.mfa.gov.ua/ua/Ukraine+-+EU+export-import+helpdesk+/Non-tariff+regulation/Загальні+вимоги+ЄС+до+імпортованих+товарів
  8. Svetlov, D. A. (2005). Byotsydnye preparaty na osnove proyzvodnykh polyheksametylenhuanydyna. Zhizn' i bezopasnost', 3-4. Avaialble at: http://xn--d1acgbof7bg6f.xn--p1ai/stati/pismo_rukovoditelya_rospotrebnadzora2/
  9. Katyonnye PAV. Wikipedia. Available at: https://en.wikipedia.org/wiki/Category:Cationic_surfactants
  10. Lysytsya, A. V., Kryvoshyya, P. Yu., Shaturs'kyy, O. Ya. (2010). Vplyv poliheksametylenhuanidynu hidrokhlorydu na plazmatychnu membranu fibroblastiv kuryachykh embrioniv ta na shtuchnu bisharovu lipidnu membranu. Biotekhnolohiya, 3 (2), 56–61.
  11. Knunyants, Y. L. (Ed.) (1988). Khymycheskaya еntsyklopedyya. Мoscow, 623.
  12. Khashyrova, S. Yu., Musaev, Yu. Y., Malkanduev, Yu. A., Lyhydov, M. Kh., Musaeva, E. B., Syvov, N. A., Mykytaev, A. K. (2009). Novye hybrydnye nanokompozyty na osnove sloystykh sylykatov y yonohennykh monomer/polymernykh akrylat- y metakrylathuanydynov. Nanotekhnyka, 3, 58–65.
  13. Rishennya Komisiyi 2005/344/YeC (2005). Ofitsiynyy visnyk Yevropeys'kykh Spivtovarystv. Available at: http://www.derzhreestr.gov.ua/file/31052
  14. Hembytskyy, P. A. (1998). Polymernyy byotsydnyy preparat polyheksametylenhuanydyn. Zaporozh'e: Polyhraf, 44.
  15. Dezparitet-info. Available at: http://dezparitet.ru/index/mekhanizm_dejstvija_pgmg/0-190
  16. Berri, L. H., Meyson, B. H., Ditrikh, R. V. (1987). Mineralohiya. Moscow: MIR, 603.
  17. Danylkovych, A., Mokrousova, O., Zhigotsky, A. (2016). Improvement of the filling and plasticization processes of forming multifunctional leather materials. Eastern-European Journal of Enterprise Technologies, 2 (6 (80)), 23–30. doi: 10.15587/1729-4061.2016.65488
  18. Mokrousova, O. R., Kachan, R. V., Kozar', O. P. (2013). Suchasni aspekty pislyadubyl'nykh protsesiv vyrobnytstva shkiry. Tekhnolohiyi ta dyzayn, 4 (9), 1–12.
  19. Kozar', O. P., Mokrousova, O. R. (2013). Eco-friendly technologies of leather manufacturing using natural minerals montmorilonite and zeolite. Technology audit and production reserves, 6 (2 (14)), 11–15. doi: 10.15587/2312-8372.2013.19499
  20. Kozar, O., Wozniak, B. (2015). Efficiency of environmentally friendly mineral compozitions when manufacturing leather for uppers of spesial shoes. Ecological innovation. Poland: Silesian University of Technology, 208–223.
  21. Kozar, O. P., Mokrousova, O. R., Grechanyk, Yu. V. (2014). Evaluation of heat resistance of leather for shoe uppers filled with natural minerals. Proceedings of the 13th Sciense International Conference «МАС ECO SHOES 2014». Cracow, 46–50.
  22. Mokrousova, E., Dzyazko, Y., Volfkovich, Y., Nikolskaya, N. (2016). Hierarchical Structure of the Derma Affected by Chemical Treatment and Filling with Bentonite: Diagnostics with a Method of Standard Contact Porosimetry. Nanophysics, Nanophotonics, Surface Studies, and Applications, 277–290. doi: 10.1007/978-3-319-30737-4_23

Downloads

Published

2017-04-25

How to Cite

Kozar, O., Sprynskyy, M., Hrechanyky, J., Okhmat, O., Lawinska, K., Rosul, R., & Himych, V. (2017). Formation of leather biostability with the use of cationic polyelectrolytes. Eastern-European Journal of Enterprise Technologies, 2(6 (86), 39–47. https://doi.org/10.15587/1729-4061.2017.96114

Issue

Section

Technology organic and inorganic substances