Modeling of fracture surface of the quasi solid-body zone of motion of the granular fill in a rotating chamber

Authors

DOI:

https://doi.org/10.15587/1729-4061.2017.96447

Keywords:

granular fill, rotating chamber, quasi solid-body zone, fracture surface, slip line

Abstract

Large-tonnage processing of granular materials is carried out in drum-type machines. Utmost simplicity of the design solutions of such equipment is paradoxically combined with the behavior of machined medium that is extremely complex to describe.

The efficiency of working processes in drum machines is determined by the mode of motion of the fill of a rotating chamber. The character of this mode is predetermined by the position of a transition surface of quasi solid-body motion zone to the zone of fall and subsequent shift, which determines dynamic activity of the filler’s movable part.

A traditional hypothesis on the implementation of processing granular materials in the drum machines is based on the concept of a separate element of the fill in a rotating chamber isolated from the surrounding medium. According to this hypothesis, the fracture surface of a solid-body zone is of cylindrical shape with a diameter that depends only on the rotation speed. Therefore, performing numerical calculations is associated with insurmountable computational difficulties. Obtaining experimental data is hampered due to the complexity of hardware control. That is why results, obtained recently, approach real motion modes of the examined medium only by qualitative characteristics.

We constructed an analytical model of behavior of a granular fill in the transition from the circular, during ascent, to the quasi-parabolic, while non-free falling, trajectory of motion in the cross-section of a cylindrical chamber that rotates around a horizontal axis. Equation of a slip line coordinates in parametric form is received. They make it possible to approximately determine the shape and position of the transition surface depending on the kinematic, geometric and rheological parameters of the system. A granular fill is considered as a whole medium with parameters that are averaged by volume. We employed the plastic rheological model.

Based on the modeling performed, we formalized a stress field in the mass of fill in the cross-section of a rotating chamber by using a system of differential equations of flat boundary equilibrium of a granular medium. A condition for the boundary equilibrium is obtained. It is demonstrated that disequilibrium is accompanied by sliding layers of the fill. We defined position of the slip lines in stress field. It was found that the motion zone transition is accompanied by the destruction of a quasi solid-body zone at the border that is a slip line in the motion picture of plastic medium in the cross-section of a chamber. It is established that the position of transition limit depends not only on the angular velocity. It is a function of radius and degree of filling the chamber, specific weight, angle of friction and ascent angle of the fill. 

Author Biography

Yuriy Naumenko, National University of Water and Environmental Engineering Soborna str., 11, Rivne, Ukraine, 33028

Doctor of Technical Sciences, Associate Professor

Department of construction, road, reclamation, agricultural machines and equipment

References

  1. Pershyn, V. F., Odnolko, V. H., Pershyna, S. V. (2009). Pererabotka sypuchykh materyalov v mashynakh barabannoho typa. Moscow: Mashynostroenye, 220.
  2. HOST 27120-86. Pechy khymycheskykh proyzvodstv s vrashchaiushchymysia barabanamy obshcheho naznachenyia. Osnovnye parametry y razmery (1992). Moscow: Yzd-vo standartov, 17.
  3. HOST 11875-86. Apparaty teploobmennye s vrashchaiushchymysia barabanamy obshcheho naznachenyia. Kholodylnyky. Osnovnye parametry y razmeruy (1988). Moscow: Yzd-vo standartov, 8.
  4. HOST 27134-86. Apparaty sushylnye s vrashchaiushchymysia barabanamy. Osnovnye parametry y razmery (2002). Moscow: Yzd-vo standartov, 4.
  5. HOST 10141-91. Melnytsy sterzhnevye y sharovye. Obshchye tekhnycheskye trebovanyia (1991). Moscow: Yzd-vo standartov, 19.
  6. HOST 12367-85. Melnytsy trubnye pomolnykh ahrehatov. Obshchye tekhnycheskye uslovyia (1986). Moscow: Yzd-vo standartov, 13.
  7. Naumenko, Yu. V. (1999). The antitorque moment in a partially filled horizontal cylinder. Theoretical Foundations of Chemical Engineering, 33 (1), 91–95.
  8. Naumenko, Yu. V. (2000). Determination of rational rotation speeds of horizontal drum machines. Metallurgical and Mining Industry, 5, 89–92.
  9. Arntz, M. M. H. D., den Otter, W. K., Briels, W. J., Bussmann, P. J. T., Beeftink, H. H., Boom, R. M. (2008). Granular mixing and segregation in a horizontal rotating drum: A simulation study on the impact of rotational speed and fill level. AIChE Journal, 54 (12), 3133–3146. doi: 10.1002/aic.11622
  10. Bonamy, D., Chavanis, P.-H., Cortet, P.-P., Daviaud, F., Dubrulle, B., Renouf, M. (2009). Euler-like modelling of dense granular flows: application to a rotating drum. The European Physical Journal B, 68 (4), 619–627. doi: 10.1140/epjb/e2009-00123-6
  11. Yin, H., Zhang, M., Liu, H. (2014). Numerical simulation of three-dimensional unsteady granular flows in rotary kiln. Powder Technology, 253, 138–145. doi: 10.1016/j.powtec.2013.10.044
  12. Arntz, M. M. H. D., Beeftink, H. H., den Otter, W. K., Briels, W. J., Boom, R. M. (2013). Segregation of granular particles by mass, radius, and density in a horizontal rotating drum. AIChE Journal, 60 (1), 50–59. doi: 10.1002/aic.14241
  13. Marigo, M., Stitt, E. H. (2015). Discrete Element Method (DEM) for Industrial Applications: Comments on Calibration and Validation for the Modelling of Cylindrical Pellets. KONA Powder and Particle Journal, 32 (0), 236–252. doi: 10.14356/kona.2015016
  14. Hung, C.-Y., Stark, C. P., Capart, H. (2016). Granular flow regimes in rotating drums from depth-integrated theory. Physical Review E, 93 (3). doi: 10.1103/physreve.93.030902
  15. Yang, S., Cahyadi, A., Wang, J., Chew, J. W. (2016). DEM study of granular flow characteristics in the active and passive regions of a three-dimensional rotating drum. AIChE Journal, 62 (11), 3874–3888. doi: 10.1002/aic.15315
  16. Chou, H.-T., Lee, C.-F. (2008). Cross-sectional and axial flow characteristics of dry granular material in rotating drums. Granular Matter, 11 (1), 13–32. doi: 10.1007/s10035-008-0118-y
  17. Dube, O., Alizadeh, E., Chaouki, J., Bertrand, F. (2013). Dynamics of non-spherical particles in a rotating drum. Chemical Engineering Science, 101, 486–502. doi: 10.1016/j.ces.2013.07.011
  18. Alizadeh, E., Dube, O., Bertrand, F., Chaouki, J. (2013). Characterization of Mixing and Size Segregation in a Rotating Drum by a Particle Tracking Method. AIChE Journal, 59 (6), 1894–1905. doi: 10.1002/aic.13982
  19. Morrison, A. J., Govender, I., Mainza, A. N., Parker, D. J. (2016). The shape and behaviour of a granular bed in a rotating drum using Eulerian flow fields obtained from PEPT. Chemical Engineering Science, 152, 186–198. doi: 10.1016/j.ces.2016.06.022
  20. Tupper, G. B., Govender, I., De Klerk, D. N., Richter, M. C., Mainza, A. N. (2015). Testing of a new dynamic Ergun equation for transport with positron emission particle tracking. AIChE Journal, 62 (3), 939–946. doi: 10.1002/aic.15081
  21. Rasouli, M., Dube, O., Bertrand, F., Chaouki, J. (2016). Investigating the dynamics of cylindrical particles in a rotating drum using multiple radioactive particle tracking. AIChE Journal, 62 (8), 2622–2634. doi: 10.1002/aic.15235
  22. Govender, I., Richter, M. C., Mainza, A. N., De Klerk, D. N. (2016). A positron emission particle tracking investigation of the scaling law governing free surface flows in tumbling mills. AIChE Journal, 63 (3), 903–913. doi: 10.1002/aic.15453
  23. Alizadeh, E., Bertrand, F., Chaouki, J. (2013). Comparison of DEM results and Lagrangian experimental data for the flow and mixing of granules in a rotating drum. AIChE Journal, 60 (1), 60–75. doi: 10.1002/aic.14259
  24. Govender, I. (2016). Granular flows in rotating drums: A rheological perspective. Minerals Engineering, 92, 168–175. doi: 10.1016/j.mineng.2016.03.021
  25. Andreev, S. E., Perov, V. A., Zverevych, V. V. (1980). Droblenye, yzmelchenye y hrokhochenye poleznykh yskopaemykh. Moscow: Nedra, 415.
  26. Sverdlyk, H. Y., Hryhorev, H. H. (1977). O strukture sechenyia materyala, peresypaiushchehosia vo vrashchaiushchemsia barabane. Yzv. vuzov. Chern. Metallurhyia, 8, 169–172.
  27. Tsytovych, N. A. (1983). Mekhanyka hruntov. Moscow: Vyschaya shkola, 288.
  28. Kharr, M. E. (1971). Osnovy teoretycheskoi mekhanyky hruntov. Moscow: Hosstroiyzdat, 320.
  29. Naday, A. (1969). Plastychnost y razrushenye tverdykh tel. Vol. 2. Moscow: Yzd-vo Myr, 864.
  30. Sokolovskyi, V. V. (1960). Statyka sypuchei sredy. Moscow: Vyschaya shkola, 241.
  31. Kondratev, D. S., Stetsenko, P. V., Shyrko, Y. V. (2005). Upruhoplastycheskoe deformyrovanye y predelnoe ravnovesye sypuchykh sred. Prykladnaia matematyka y mekhanyka, 69 (1), 117–134.
  32. Bushmanova, O. P., Revuzhenko, O. A. (2004). Dopredelnoe plastycheskoe deformyrovanye sypuchei sredy vo vrashchaiushchemsia barabane. Fyzyko-tekhnycheskye problemy razrabotky poleznykh yskopaemykh, 6, 58–67.
  33. Slanevskyi, A. V. (1996). Osnovy mekhanyky sypuchei sredy vo vrashchaiushchykhsia pechakh y melnytsakh. Sankt-Peterburg, 238.
  34. Henyev, H. A. (1958). Voprosy dynamyky sypuchei sredy. Moscow Hosstroiyzdat, 122.

Downloads

Published

2017-04-12

How to Cite

Naumenko, Y. (2017). Modeling of fracture surface of the quasi solid-body zone of motion of the granular fill in a rotating chamber. Eastern-European Journal of Enterprise Technologies, 2(1 (86), 50–57. https://doi.org/10.15587/1729-4061.2017.96447

Issue

Section

Engineering technological systems