Determining the parameters of oscillation dissipation in a column of sucker rods

Authors

  • Jaroslav Grydzhuk Ivano-Frankivsk National Technical University of Oil and Gas Karpatska str., 15, Ivano-Frankivsk, Ukraine, 76019, Ukraine https://orcid.org/0000-0002-1429-8640
  • Mykhailo Lyskanych Ivano-Frankivsk National Technical University of Oil and Gas Karpatska str., 15, Ivano-Frankivsk, Ukraine, 76019, Ukraine https://orcid.org/0000-0002-6422-384X
  • Bogdan Kopey Ivano-Frankivsk National Technical University of Oil and Gas Karpatska str., 15, Ivano-Frankivsk, Ukraine, 76019, Ukraine https://orcid.org/0000-0002-5445-103X
  • Yu Shuanzhuy Ivano-Frankivsk National Technical University of Oil and Gas Karpatska str., 15, Ivano-Frankivsk, Ukraine, 76019, Ukraine

DOI:

https://doi.org/10.15587/1729-4061.2017.96528

Keywords:

damping, dissipation, alternating loads, column of sucker rods, mechanical system, resonance

Abstract

In order to calculate a column of pumping rods as a mechanical system with concentrated masses, to determine dissipation coefficients, we applied a traditional method of analytical mechanics.

A mathematical model is developed of longitudinal oscillations of a three-stage conditionally vertical column of sucker rods using the functions of displacement and load of its separate stages. Dependence for determining the dissipation coefficient of oscillations is derived from the solution of the system of equations.

In accordance with the chosen set-up of a three-stage column of sucker rods, we examined a change in the dissipation coefficient of oscillations depending on the relationship between the rigidities of its stages. A change in the relationship between rigidities of the stages was carried out by changing their material.

It was found that for the selected set-up of a column of sucker rods, the use of a fiberglass stage instead of that made of steel reduces its rigidity by approximately 4 times, and increases the dissipation of oscillations almost as much. Such approach makes it possible to prevent the phenomenon of resonance in the operation of a SR column during transition modes under the action of alternating load.

Author Biographies

Jaroslav Grydzhuk, Ivano-Frankivsk National Technical University of Oil and Gas Karpatska str., 15, Ivano-Frankivsk, Ukraine, 76019

PhD, Associate Professor

Department of Applied Mechanics

Mykhailo Lyskanych, Ivano-Frankivsk National Technical University of Oil and Gas Karpatska str., 15, Ivano-Frankivsk, Ukraine, 76019

Doctor of Technical Sciences, Professor

Department of Applied Mechanics

Bogdan Kopey, Ivano-Frankivsk National Technical University of Oil and Gas Karpatska str., 15, Ivano-Frankivsk, Ukraine, 76019

Doctor of Technical Sciences, Professor

Department of oil and gas equipment

Yu Shuanzhuy, Ivano-Frankivsk National Technical University of Oil and Gas Karpatska str., 15, Ivano-Frankivsk, Ukraine, 76019

Postgraduate student

Department of oil and gas equipment

References

  1. Waggoner, J. R. (1979). Insights from the downhole dynamometer database. Southwestern petroleum short course. Sandia National Laboratories Albuquerque, New Mexico. Avaialble at: https://www.osti.gov/scitech/servlets/purl/456351
  2. Jiang, M. Z., Dong, K. X., Xin, M., Liu, M. X. (2012). Dynamic Instability of Slender Sucker Rod String Vibration Characteristic Research. Advanced Materials Research, 550-553, 3173–3179. doi: 10.4028/www.scientific.net/amr.550-553.3173
  3. Jiang, M., Cai, Y., Lu, Y., Wang, D. (2013). Research on Wear Law of Rod String in Directional Well. Journal of Applied Sciences, 13 (21), 4676–4680. doi: 10.3923/jas.2013.4676.4680
  4. Romero, O. J., Almeida, P. (2014). Numerical simulation of the sucker-rod pumping system. Ingenieria e Investigacion, 34 (3), 4–11. doi: 10.15446/ing.investig.v34n3.40835
  5. Vasserman, I. N., Shardakov, I. N. (2003). Postanovka i reshenie uprugih dinamicheskih zadach dlya sterzhnevyh sistem s granichnymi usloviyami, opisyvaemymi mnogoznachnymi sootnosheniyami. Prikladnaya mehanika i tehnicheskaya fizika, 44 (3), 134–135.
  6. Liu, L., Tong, C., Wang, J., Liu, R. (2004). A Uniform and Reduced Mathematical Model for Sucker Rod Pumping. Lecture Notes in Computer Science, 372–379. doi: 10.1007/978-3-540-24687-9_47
  7. Babayan, S. A. (2008). Prodolnye kolebaniya sterzhnya s podvizhnymi kontsami, odin iz kotoryh nagruzhen i opiraetsya na pruzhinu. Izvestiya natsionalnoy akademii nauk Armenii. Mehanika, 61 (4), 37–43.
  8. Lyskanych, M. V., Hrydzhuk, Ja. S., Steliga, I. I. (2015). Otsinka koefitsiientu dynamichnosti kolony nasosnykh shtanh ta vyznachennia umov nedopushchennia ii rezonansu. Vibratsii v tekhnitsi ta tekhnolohiiakh. Dnipropetrovsk: NHU, 45–46.
  9. Steliga, I., Grydzhuk, J., Dzhus, A. (2016). An experimental and theoretical method of calculating the damping ratio of the sucker rod column oscillation. Eastern-European Journal of Enterprise Technologies, 2 (7 (80)), 20–25. doi: 10.15587/1729-4061.2016.66193
  10. Khakimov, A. G. (2010). Diagnostika povrezhdenyj vertikaljnoj shtangi na uprugoj podveske. Neftegazovoe delo, 1, 1–9. Available at: http://ogbus.ru/authors/Khakimov/Khakimov_1.pdf
  11. Blekhman, I. I. (Ed.) (1979). Vibratsiya v tekhike. Vol. 2. Kolebaniya nelineynykh mekhanicheskikh system. Мoscow: Mashinostroenie, 351.
  12. Bolotyn, V. V. (1979). Sluchajnie kolebanyja uprughykh system. Moscow: Nauka, 335.
  13. Pavlovs'kyy, M. A. (2002). Teoretychna mekhanika. Kyiv: Tekhnika, 512.

Downloads

Published

2017-04-29

How to Cite

Grydzhuk, J., Lyskanych, M., Kopey, B., & Shuanzhuy, Y. (2017). Determining the parameters of oscillation dissipation in a column of sucker rods. Eastern-European Journal of Enterprise Technologies, 2(7 (86), 13–18. https://doi.org/10.15587/1729-4061.2017.96528

Issue

Section

Applied mechanics