Improvement of energy efficiency in the operation of a thermal reactor with submerged combustion apparatus through the cyclic input of energy

Authors

DOI:

https://doi.org/10.15587/1729-4061.2017.96721

Keywords:

structural engineering, microarc oxidation, magnesium alloys, phase composition, adhesion strength, hardness

Abstract

We examined the patterns in the formation of MAO-coatings on magnesium alloys. Low density and high specific strength of magnesium alloys is the basis for their widespread use. However, poor corrosion resistance of magnesium alloys limits the scope of their application. This problem is solved by transforming the surface layer of magnesium alloys into the multiphase coatings that consist of crystalline oxides and salts of magnesium. The most effective formulations of electrolytes were selected to ensure obtaining the MAO layers of good quality. We explored the phase composition of coatings, hardness, adhesion between coatings and the base, and their protective properties. It was found that the most effective are the multi-component electrolytes containing alkali NaOH, sodium aluminate NaAlO2 and sodium hexametaphosphate Na5P3O10. The MAO treatment provides strengthening of surface (hardness of coatings is 2000−6600 MPa) and improves protective properties. It is demonstrated that the highest protective properties are displayed by the MAO-coatings that contain in their composition, along with MgO, the MgAl2O4 spinel. Protective properties are improved with an increase in the spinel content. This is due to the fact that the occurrence of spinel in the composition of a coating, in contrast to MgO, is accompanied by the increase in specific volume of the coating, resulting in the occurrence of compressive stresses and, as a consequence, in the formation of thicker coatings. The recommendations are given regarding the changes in the composition of electrolyte and parameters of electrolysis to ensure an increase in spinel in the composition of the coating.

Author Biographies

Valery Belozerov, National Technical University «Kharkiv Polytechnic Institute» Kyrpychova str., 2, Kharkiv, Ukraine, 61002

PhD, Professor

Department of Materials Science

Anna Mahatilova, National Technical University «Kharkiv Polytechnic Institute» Kyrpychova str., 2, Kharkiv, Ukraine, 61002

PhD, Senior Researcher

Department of Materials Science

Oleg Sobol', National Technical University «Kharkiv Polytechnic Institute» Kyrpychova str., 2, Kharkiv, Ukraine, 61002

Doctor of Physics and Mathematics Sciences, Professor

Department of Materials Science

Valeria Subbotinа, National Technical University «Kharkiv Polytechnic Institute» Kyrpychova str., 2, Kharkiv, Ukraine, 61002

PhD, Associate Professor

Department of Materials Science

Alexander Subbotin, National Technical University «Kharkiv Polytechnic Institute» Kyrpychova str., 2, Kharkiv, Ukraine, 61002

Researcher

Department of Materials Science

References

  1. Bourebia, M., Laouar, L., Hamadache, H., Dominiak, S. (2016). Improvement of surface finish by ball burnishing: approach by fractal dimension. Surface Engineering, 33 (4), 255–262. doi: 10.1080/02670844.2016.1232778
  2. Morton, B. D., Wang, H., Fleming, R. A., Zou, M. (2011). Nanoscale Surface Engineering with Deformation-Resistant Core-Shell Nanostructures. Tribology Letters, 42 (1), 51–58. doi: 10.1007/s11249-011-9747-0
  3. Maistro, G., Perez-Garcia, S. A., Norell, M., Nyborg, L., Cao, Y. (2016). Thermal decomposition of N-expanded austenite in 304L and 904L steels. Surface Engineering, 33 (4), 319–326. doi: 10.1080/02670844.2016.1262989
  4. Sobol’, O. V. (2016). The influence of nonstoichiometry on elastic characteristics of metastable β-WC1–x phase in ion plasma condensates. Technical Physics Letters, 42 (9), 909–911. doi: 10.1134/s1063785016090108
  5. Pogrebnjak, A. D., Beresnev, V. M., Bondar, O. V., Abadias, G., Chartier, P., Postol’nyi, B. A. et. al. (2014). The effect of nanolayer thickness on the structure and properties of multilayer TiN/MoN coatings. Technical Physics Letters, 40 (3), 215–218. doi: 10.1134/s1063785014030092
  6. Pogrebnjak, A. D., Yakushchenko, I. V., Abadias, G., Chartier, P., Bondar, O. V., Beresnev, V. M. et. al. (2013). The effect of the deposition parameters of nitrides of high-entropy alloys (TiZrHfVNb)N on their structure, composition, mechanical and tribological properties. Journal of Superhard Materials, 35 (6), 356–368. doi: 10.3103/s106345761306004x
  7. Barmin, A. E., Sobol’, O. V., Zubkov, A. I., Mal’tseva, L. A. (2015). Modifying effect of tungsten on vacuum condensates of iron. The Physics of Metals and Metallography, 116 (7), 706–710. doi: 10.1134/s0031918x15070017
  8. Bell, T. (1990). Surface engineering: past, present, and future. Surface Engineering, 6 (1), 31–40. doi: 10.1179/sur.1990.6.1.31
  9. Sobol’, O. V. (2007). Nanostructural ordering in W-Ti-B condensates. Physics of the Solid State, 49 (6), 1161–1167. doi: 10.1134/s1063783407060236
  10. Czosnek, C., Bucko, M. M., Janik, J. F., Olejniczak, Z., Bystrzejewski, M., Labedz, O., Huczko, A. (2015). Preparation of silicon carbide SiC-based nanopowders by the aerosol-assisted synthesis and the DC thermal plasma synthesis methods. Materials Research Bulletin, 63, 164–172. doi: 10.1016/j.materresbull.2014.12.003 .
  11. Sobol’, O. V., Andreev, A. A., Gorban’, V. F. (2016). Structural Engineering of Vacuum-ARC Multiperiod Coatings. Metal Science and Heat Treatment, 58 (1-2), 37–39. doi: 10.1007/s11041-016-9961-3
  12. Azarenkov, N. A., Sobol, O. V., Beresnev, V. M., Pogrebnjak, A. D., Kolesnikov, D. A., Turbin, P. V., Toryanik, I. N. (2013). Vacuum-plasma coatings based on the multielement nitrides. Metallofizika i noveishie tekhnologii, 35 (8), 1061–1084.
  13. Lu, X., Mohedano, M., Blawert, C., Matykina, E., Arrabal, R., Kainer, K. U., Zheludkevich, M. L. (2016). Plasma electrolytic oxidation coatings with particle additions – A review. Surface and Coatings Technology, 307, 1165–1182. doi: 10.1016/j.surfcoat.2016.08.055
  14. Vladimirov, B., Krit, B., Lyudin, V. et. al. (2014). Mikrodugovoe oksidirovanie magnievyih splavov. Elektronnaya Obrabotka Materialov, 3, 1–38.
  15. Dehnavi, V., Luan, B. L., Liu, X. Y., Shoesmith, D. W., Rohani, S. (2015). Correlation between plasma electrolytic oxidation treatment stages and coating microstructure on aluminum under unipolar pulsed DC mode. Surface and Coatings Technology, 269, 91–99. doi: 10.1016/j.surfcoat.2014.11.007
  16. Hussein, R. O., Nie, X., Northwood, D. O. (2013). The application of Plasma Electrolytic Oxidation (PEO) to the production of corrosion resistant coatings on magnesium alloys: a review. Corrosion & Materials, 38 (1), 54–65.
  17. Wang, Y., Wei, D., Yu, J., Di, S. (2014). Effects of Al2O3 Nano-additive on Performance of Micro-arc Oxidation Coatings Formed on AZ91D Mg Alloy. Journal of Materials Science & Technology, 30 (10), 984–990. doi: 10.1016/j.jmst.2014.03.006
  18. Shokouhfar, M., Allahkaram, S. R. (2016). Formation mechanism and surface characterization of ceramic composite coatings on pure titanium prepared by micro-arc oxidation in electrolytes containing nanoparticles. Surface and Coatings Technology, 291, 396–405. doi: 10.1016/j.surfcoat.2016.03.013
  19. Curran, J. A., Clyne, T. W. (2005). Thermo-physical properties of plasma electrolytic oxide coatings on aluminium. Surface and Coatings Technology, 199 (2-3), 168–176. doi: 10.1016/j.surfcoat.2004.09.037
  20. Rapheal, G., Kumar, S., Scharnagl, N., Blawert, C. (2016). Effect of current density on the microstructure and corrosion properties of plasma electrolytic oxidation (PEO) coatings on AM50 Mg alloy produced in an electrolyte containing clay additives. Surface and Coatings Technology, 289, 150–164. doi: 10.1016/j.surfcoat.2016.01.033
  21. Lu, X., Sah, S. P., Scharnagl, N., Stormer, M., Starykevich, M., Mohedano, M. (2015). Degradation behavior of PEO coating on AM50 magnesium alloy produced from electrolytes with clay particle addition. Surface and Coatings Technology, 269, 155–169. doi: 10.1016/j.surfcoat.2014.11.027
  22. Liang, J., Hu, L., Hao, J. (2007). Characterization of microarc oxidation coatings formed on AM60B magnesium alloy in silicate and phosphate electrolytes. Applied Surface Science, 253 (10), 4490–4496. doi: 10.1016/j.apsusc.2006.09.064
  23. Liu, L., Yang, P., Guo, H., An, M. (2013). Microstructure and corrosion behavior of micro-arc oxidation film on magnesium alloy. International Journal of Electrochemical Science, 8, 6077–6084.
  24. Umanskiy, Ya., Skakov, Yu., Ivanov, A. et. al. (1982). Kristallografiya, rentgenografiya i elektronnaya mikroskopiya. Мoscow: Metallurgiya, 632.
  25. Arrabal, R., Matykina, E., Hashimoto, T., Skeldon, P., Thompson, G. E. (2009). Characterization of AC PEO coatings on magnesium alloys. Surface and Coatings Technology, 203 (16), 2207–2220. doi: 10.1016/j.surfcoat.2009.02.011

Downloads

Published

2017-04-26

How to Cite

Belozerov, V., Mahatilova, A., Sobol’, O., Subbotinа V., & Subbotin, A. (2017). Improvement of energy efficiency in the operation of a thermal reactor with submerged combustion apparatus through the cyclic input of energy. Eastern-European Journal of Enterprise Technologies, 2(5 (86), 39–43. https://doi.org/10.15587/1729-4061.2017.96721

Issue

Section

Applied physics