Development of efficient solar cells with the use of multifunctional multitextures

Authors

DOI:

https://doi.org/10.15587/1729-4061.2017.96906

Keywords:

solar cell, porous silicon, photoelectric converter, conversion efficiency, multifunctional microtexture

Abstract

Here we demonstrate the prospects of creating a solar cells using the hybrid technologies of obtaining multifunctional multitextures of porous silicon (PS) to the frontal surface. We conducted analysis of the existing models of PSand selected the models, most suitable for the creation of microtexture. We theoretically examined the relationship between the diameter of pore dP, porosity P and the region of specific surface S. On the samples with high specific resistance, we explored the interaction between porosity P(t) and the region of specific surface S(t) of the PS grown by the electrochemical etching of silicon substrates. Depending on the technological parameters, it is possible to form the layers of macro-, micro- or nanopores. Multifunctional multitextures were fabricated on the frontal surface of photoelectric converters (SC). VAC were measured by the spectral conditions AM 1,5G, experiments for both samples of SC were carried out on the silicon substrates with the same parameters and area. SC parameters were confirmed by the volt-ampere characteristics of SC and resulting measurements of efficiency in the obtained SC and spectral characteristics.

Spectral characteristic for the multitexture in the range of 400–1150 nm has a significant feature; it practically has no high values in the infrared range. This significantly reduces the integral coefficient of reflectivity for the frontal surface multitexture of SC ~7 %, different from other integral coefficients of reflectivity. For the chemical texture ~17.5 %, random pyramids ~11.2 %, for the polished surface of Si – larger than 35 %.

Author Biographies

Valerij Yerokhov, Lviv Polytechnic National University S. Bandera str., 12, Lviv, Ukraine, 79013

Doctor of Technical Sciences, Associate Professor

Department of Semiconductor Electronics 

Olga Ierokhova, Pidstryhach Institute for Applied Problems of Mechanics and Mathematics National Academy of Sciences of Ukraine Naukova str., 3-b, Lviv, Ukraine, 79060

Postgraduate student

References

  1. Luque, A. (2011). Will we exceed 50 % efficiency in photovoltaics? Journal of Applied Physics, 110 (3), 031301. doi: 10.1063/1.3600702
  2. Wu, C., Crouch, C. H., Zhao, L., Carey, J. E., Younkin, R., Levinson, J. A. et. al. (2001). Near-unity below-band-gap absorption by microstructured silicon. Applied Physics Letters, 78 (13), 1850–1852. doi: 10.1063/1.1358846
  3. Yerokhov, V., Ierokhova, O. (2016). Coatings of the “Black-Silicon” type for silicone solar cells. 2016 13th International Conference on Modern Problems of Radio Engineering, Telecommunications and Computer Science (TCSET). doi: 10.1109/tcset.2016.7452066
  4. Rahman, T., Bonilla, R. S., Nawabjan, A., Wilshaw, P. R., Boden, S. A. (2017). Passivation of all-angle black surfaces for silicon solar cells. Solar Energy Materials and Solar Cells, 160, 444–453. doi: 10.1016/j.solmat.2016.10.044
  5. Khezami, L., Bessadok Jemai, A., Alhathlool, R., Ben Rabha, M. (2016). Electronic quality improvement of crystalline silicon by stain etching-based PS nanostructures for solar cells application. Solar Energy, 129, 38–44. doi: 10.1016/j.solener.2016.01.034
  6. Yerokhov, V. Y., Melnyk, I. I. (1999). Porous silicon in solar cell structures: a review of achievements and modern directions of further use. Renewable and Sustainable Energy Reviews, 3 (4), 291–322. doi: 10.1016/s1364-0321(99)00005-2
  7. Derbali, L., Ezzaouia, H. (2013). Electrical properties improvement of multicrystalline silicon solar cells using a combination of porous silicon and vanadium oxide treatment. Applied Surface Science, 271, 234–239. doi: 10.1016/j.apsusc.2013.01.166
  8. Won, C. W., Nersisyan, H. H., Shin, C. Y., Lee, J. H. (2009). Porous silicon microparticles synthesis by solid flame technique. Microporous and Mesoporous Materials, 126 (1-2), 166–170. doi: 10.1016/j.micromeso.2009.05.036
  9. Jemai, R., Alaya, A., Meskini, O., Nouiri, M., Mghaieth, R., Khirouni, K., Alaya, S. (2007). Electrical properties study of double porous silicon layers: Conduction mechanisms. Materials Science and Engineering: B, 137 (1-3), 263–267. doi: 10.1016/j.mseb.2006.12.003
  10. Druzhinin, A., Yerokhov, V., Nichkalo, S., Berezhanskyi, Y. (2016). Micro- and Nanotextured Silicon for Antireflective Coatings of Solar Cells. Journal of Nano Research, 39, 89–95. doi: 10.4028/www.scientific.net/jnanor.39.89
  11. Loni, A., Canham, L. T., Berger, M. G., Arens-Fischer, R., Munder, H., Luth, H. et. al. (1996). Porous silicon multilayer optical waveguides. Thin Solid Films, 276 (1-2), 143–146. doi: 10.1016/0040-6090(95)08075-9
  12. Prokes, S. M., Glembocki, O. J., Bermudez, V. M., Kaplan, R., Friedersdorf, L. E., Searson, P. C. (1992). SiHxexcitation: An alternate mechanism for porous Si photoluminescence. Physical Review B, 45 (23), 13788–13791. doi: 10.1103/physrevb.45.13788
  13. Brandt, M. S., Fuchs, H. D., Stutzmann, M., Weber, J., Cardona, M. (1992). Structural and Optical Properties of Porous Silicon Nanostructures. Solid State Communications, 81, 307.
  14. Witten, T. A., Sander, L. M. (1983). Diffusion-limited aggregation. Physical Review B, 27 (9), 5686–5697. doi: 10.1103/physrevb.27.5686
  15. Smith, R. L., Collins, S. D. (1989). Generalized model for the diffusion-limited aggregation and Eden models of cluster growth. Physical Review A, 39 (10), 5409–5413. doi: 10.1103/physreva.39.5409
  16. Parkhutik, V. P., Shershulsky, V. I. (1992). Theoretical modelling of porous oxide growth on aluminium. Journal of Physics D: Applied Physics, 25 (8), 1258–1263. doi: 10.1088/0022-3727/25/8/017
  17. Walgraef, D., Ghoniem, N. M., Lauzeral, J. (1997). Deformation patterns in thin films under uniform laser irradiation. Physical Review B, 56 (23), 15361–15377. doi: 10.1103/physrevb.56.15361
  18. Lehmann, V. (1999). The Physics of Macropore Formation in Low-Doped p-Type Silicon. Journal of The Electrochemical Society, 146 (8), 2968. doi: 10.1149/1.1392037
  19. Zhang, X. G. (2004). Morphology and Formation Mechanisms of Porous Silicon. Journal of The Electrochemical Society, 151 (1), C69. doi: 10.1149/1.1632477
  20. Starkov, V. V., Starostina, E. A., Vyatkin, A. F., Volkov, V. T. (2000). Dielectric Porous Layer Formation in Si and Si/Ge by Local Stain Etching. Physica status solidi (a), 182 (1), 93–96. doi: 10.1002/1521-396x(200011)182:1<93::aid-pssa93>3.0.co;2-8
  21. Eisenlohr, J., Tucher, N., Hauser, H., Graf, M., Benick, J., Blasi, B. et. al. (2016). Efficiency increase of crystalline silicon solar cells with nanoimprinted rear side gratings for enhanced light trapping. Solar Energy Materials and Solar Cells, 155, 288–293. doi: 10.1016/j.solmat.2016.06.033
  22. Yerokhov, V., Ierokhova, O. (2016). Improved porous silicon-based multifunctional materials for the solar cells antireflection coating. 2016 International Conference on Electronics and Information Technology (EIT). doi: 10.1109/iceait.2016.7500990
  23. Druzhinin, A. A., Yerokhov, V. Yu., Nichkalo, S. I., Berezhanskyi, Y. I., Chekaylo, M. V. (2015). Texturing of the Silicon Substrate with Nanopores and Si Nanowires for Anti-reflecting surfaces of solar cells. Journal of nano-and electronic physics, 7 (2), 02030.
  24. Yerokhov, V. Yu., Druzhinin, A. A., Ierokhova, O. V. (2015). Modification of the properties of porous silicon for solar cells by hydrogenation. Eastern-European Journal of Enterprise Technologies, 2 (5 (74)), 17–23. doi: 10.15587/1729-4061.2015.40067

Downloads

Published

2017-04-29

How to Cite

Yerokhov, V., & Ierokhova, O. (2017). Development of efficient solar cells with the use of multifunctional multitextures. Eastern-European Journal of Enterprise Technologies, 2(8 (86), 45–51. https://doi.org/10.15587/1729-4061.2017.96906

Issue

Section

Energy-saving technologies and equipment