Heat transfer intensity in the evaporation zone of two-phase thermosyphons

Authors

  • Володимир Юрійович Кравець National Technical University “Kyiv Politechnic Institute” Peremogy av. 37, Kyiv, Ukraine, 03056, Ukraine https://orcid.org/0000-0002-8891-0812
  • Валерий Иванович Коньшин National Technical University “Kyiv Politechnic Institute” Peremogy av. 37, Kyiv, Ukraine, 03056, Ukraine
  • Наталья Сергеевна Ванеева National Technical University “Kyiv Politechnic Institute” Peremogy av. 37, Kyiv, Ukraine, 03056, Ukraine

DOI:

https://doi.org/10.15587/1729-4061.2014.9717

Keywords:

thermosyphone, evaporation zone, condensation zone, heat flow, heat-transfer agent, heat-transfer coefficient, inclination angle, filling degree

Abstract

Decrease in the weight and size of electronic equipment with an increase in the functional capabilities leads to the growth of specific heat loads and their temperature modes that can cause failure of the entire device. Therefore, searching for effective systems of ensuring the set temperature modes of electronic device elements is a topical issue. Currently, passive evaporationcondensation devices in the form of closed two-phase thermosyphons have found wide use. Despite the considerable amount of studies on heat transfer characteristics of thermosyphons, there are difficulties in calculating the intensity of processes in them at the change in geometric parameters. One of the important parameters that affect the amount of transmitted heat energy of thermosyphons is their inner diameter.

The study of the influence of the internal diameter (5mm and 9mm) of two-phase700 mmlong thermosyphons on the heat transfer intensity in the heating zone for two heat-transfer agents (water and ethanol) is given in the paper. It is shown that, at the inner diameter decrease, the heat transfer intensity in the heating zone reduces. The thermosyphon inclination angle does not practically affect heat transfer coefficients in the heating zone.

The dependence, allowing to calculate the heat transfer intensity during ethanol boiling in the heating zone of the thermosyphon with the inner diameter9 mmand length700 mmis obtained.

Experimental data, obtained during the study are important for designing thermosyphons with optimal heat transfer parameters, as well as for efficient cooling systems.

Author Biographies

Володимир Юрійович Кравець, National Technical University “Kyiv Politechnic Institute” Peremogy av. 37, Kyiv, Ukraine, 03056

Ph.D., Associate Professor.

Department of nuclear power plants and engineering thermophysics

Валерий Иванович Коньшин, National Technical University “Kyiv Politechnic Institute” Peremogy av. 37, Kyiv, Ukraine, 03056

Ph.D., Associate Professor.

Department of nuclear power plants and engineering thermophysics

Наталья Сергеевна Ванеева, National Technical University “Kyiv Politechnic Institute” Peremogy av. 37, Kyiv, Ukraine, 03056

Undergraduate

Department of nuclear power plants and engineering thermophysics

References

  1. Безродный, М. К. Двухфазные термосифоны в промышленной теплотехнике [Текст] / М. К. Безродный, С. С. Волков, В. Ф. Мокляк. – К: Вища школа, 1991. – 75 с.
  2. Безродный, М. К. Процессы переноса в двухфазных термосифонных системах. Теория и практика [Текст] / М. К.Безродный, И. Л. Пиоро, Т. О. Костюк. – К: Факт, 2005. – 704 с.
  3. Свириденко, И. И. Расчетное моделирование аварийного расхолаживания ВВЭР-1000 автономной термосифонной СПОТ [Текст] : зб. науков. пр. / И. И. Свириденко // СНУЯЕтаП. – 2006. – Вип. 17. – С. 29–41.
  4. Khazaee, I. Experimental investigation of effective parameters and correlation of geyser boiling in a two-phase closed thermosyphon [Text] / I. Khazaee, R. Hosseini, S. H. Noie // Applied Thermal Engineering. – 2010. – Vol. 30, № 5. – Р. 406–412.
  5. Кравец, В. Ю. Пульсационные явления в закрытых двухфазных термосифонах [Текст] : зб. наук. пр. / В. Ю. Кравец, Е. Н. Письменный, В. И. Коньшин // СНУЯЕ та П. – 2009. – Вип. 4 (32). – С. 39–46.
  6. Кравец, В. Ю. Влияние режимных факторов на теплопередающие характеристики двухфазных термосифонов [Текст] : зб.наук. пр. / В. Ю. Кравец, Е. Н. Письменный, В. И. Коньшин, Бехмард Голамреза // СНУЯЕ та П. – 2010. – Вип. 4 (36). – C. 41–49.
  7. Hussam, Jo. Experimental investigation of small diameter two-phase closed thermosyphons charged with water, FC-84, FC-77 and FC-3283 [Text] / Jo. Hussam, Ant. J. Robinson // Applied Thermal Engineering. – 2010. – Vol. 30. – Р. 201–211.
  8. Noie, S. H. Heat transfer characteristics of two-phase closed thermosyphon [Text] / S. H. Noie // Applied Thermal Engineering. – 2005. – Vol. 25. – P. 495–506.
  9. Imura, H. Heat transfer in two-phase closed-type thermosyphons [Text] / H. Imura, H. Kusada, J. Oyata et al. // Transactions of Japan Society of Mechanical Engineers. – 1977. – Vol. 22. – P. 485–493.
  10. Френкель, Я. И. Кинетическая теория жидкостей [Текст] / Я. И. Френкель. – М.: Наука, 1975. – 592 с.
  11. Bernath, L. Theory of Bubble Formation in Liquids [Text] / L. Bernath // Ind. Eng. Chem. – 1952. – Vol. 44, № 6. – P. 1310–1313.
  12. Лабунцов, Д. А. Приближенная теория теплообмена при развитом пузырьковом кипении [Текст] / Д. А. Лабунцов // Изв. АН СССР. Энергетика и транспорт. – 1963. – № 1. – С. 58–71.
  13. Григорьев, В. А. Кипение криогенных жидкостей [Текст] / В. А. Григорьев, Ю. М. Павлов, Е. В. Аметистов. – М.: Энергия, 1977. – 288 с.
  14. Двайер, О. Теплообмен при кипении жидких металлов [Текст] / О. Двайер. – М.: Мир, 1980. – 516 с.
  15. Присняков, В. Ф. Кипение [Текст] / В. Ф. Присняков. – Киев: Наук. думка, 1988. – 240 с.
  16. Гриффитс, А. Роль состояния поверхности при пузырчатом кипении [Текст] / А. Гриффитс, Дж. Уоллис // Вопросы физики кипения. – 1974. – С. 99–137.
  17. Dhir, V. K. Results of Some Recent Studies on Pool Nucleate and Film Boiling [Text] / V. K. Dhir // Heat and Mass Transfer. – 1997. – Vol. 97. – P. 143–157.
  18. Bezrodny, M. K., Volkov, S. S., Mokliak, V. F. (1991). Twophase thermosyphon in the heat engineering industrial. Kiev, Ukraine, Vysha school, 75.
  19. Bezrodny, M. K., Pioro, I. L., Kostyuk, T. O. (2005). Transfer processes in two-phase thermosyphon systems. Theory and practice. Kiev, Ukraine, Fact, 704.
  20. Svyrydenko, I. I. (2006). Numerical modeling of emergency cooling VVER-1000 battery thermosyphon SPOT. In the ST. Science. Prace SNUYaEandP, 17, 29–41.
  21. Khazaee, I., Hosseini, R., Noie, S. H. (2010). Experimental investigation of effective parameters and correlation of geyser boiling in a two-phase closed thermosyphon. Applied Thermal Engineering, 30(5), 406–412.
  22. Kravets, V. Y., Pismenny, E. N., Konshin, V. I. (2009). Pulsation phenomena in two-phase closed thermos backgrounds. In the ST. Science. Prace, 4 (32), 39–46.
  23. Kravets, V. Y., Pismenny, E. N., Behmard, Gholamreza (2010). Effect of regime factors on heat transfer characteristics of twophase thermosyphons. In the ST. Science. Prace SNUYaEandP, 4 (36), 41–49.
  24. Hussam, Jo., Robinson, Ant. J. (2010). Experimental investigation of small diameter two-phase closed thermosyphons charged with water, FC-84, FC-77 and FC-3283. Applied Thermal Engineering, 30, 201–211.
  25. Noie, S. H. (2005). Heat transfer characteristics of two-phase closed thermosyphon. Applied Thermal Engineering, 25, 495–506.
  26. Imura, H., Kusada, H., Oyata, J. (1977). Heat transfer in two-phase closed-type thermosyphons. Transactions of Japan Society of Mechanical Engineers, 22, 485–493.
  27. Frenkel, Ya. I. (1975). Kinetic theory of liquids. Moscow, Nauka, 592.
  28. Bernath, L. (1952). Theory of Bubble Formation in Liquids. Ind. Eng. Chem, 44 (6), 1310–1313.
  29. Labuntsov, D. A. (1963). Approximate theory of heat transfer at the bubble developed nucleate boiling. Math. USSR Academy of Sciences . Energy and trans – port, 1, 58–71.
  30. Grigoriev, V. A., Pavlov, Y. M. Amethystov, E. V. (1977). Boiling cryogenic of liquids. Moscow, Energiya, 288.
  31. Dwyer, O. (1980). Boiling heat transfer of liquid metals. Moscow, World, 516.
  32. Prisnyakov, V. F. (1988). Boiling. Kiev, Sciences Dumka, 240.
  33. Griffiths, A., Wallis, J. (1974). The role of the surface state at nucleate boiling. Questions of Physics boil. Moscow, World, 99–137.
  34. Dhir, V. K. (1997). Results of Some Recent Studies on Pool Nucleate and Film Boiling. Heat and Mass Transfer 97, Kanpur, India, 143–157.

Published

2014-04-15

How to Cite

Кравець, В. Ю., Коньшин, В. И., & Ванеева, Н. С. (2014). Heat transfer intensity in the evaporation zone of two-phase thermosyphons. Eastern-European Journal of Enterprise Technologies, 2(5(68), 45–50. https://doi.org/10.15587/1729-4061.2014.9717

Issue

Section

Applied physics