Control over grape yield in the north-eastern region of Ukraine using mathematical modeling
DOI:
https://doi.org/10.15587/1729-4061.2017.97969Keywords:
harvest prediction, logistic regression, information system, control over yield, a grape cultureAbstract
In the practical cultivation of cultures, including grapes, prediction is an inherent attribute, since, under weather actions, it is possible to immediately take measures before one or another degree of the vegetation of culture is affected. In order to develop mathematical software of an information system for determining the probability of reduction in the yield of grapes, we observed the annual variation in temperatures. Moreover, to manage this process, its comparison was conducted with the development of grapevine by the phases of its development for 16 years. By employing the method of binary logistic regression, we revealed three most significant indicators (radiation background, the sum of efficient temperatures during flowering, annual total precipitation in the previous year), which were included into the mathematical model developed. The results obtained make it possible to estimate the risk of reduction in the harvest of grapes, which is grown under conditions of the Northeastern forest-steppe region of Ukraine (Kharkiv region). The developed model as a whole and its separate coefficients are statistically significant. It is also established that all the predictors, in accordance with the chi-squared test, impact the prediction of reduction in the yield of grape. The obtained results might be used when making a decision about the need of change in the agrotechnical methods for the purpose of improving productivity by changing the course of specific phases in the vegetation of grape.
References
- Hatfield, J., Takle, G., Grotjahn, R., Holden, P., R. Izaurralde, C., Mader, T. et. al. (2014). Agriculture. Climate Change Impacts in the United States: The Third National Climate Assessment. Global Change Research Program. U.S., 150–174.
- Mozell, M. R., Thach, L. (2014). The impact of climate change on the global wine industry: Challenges & solutions. Wine Economics and Policy, 3 (2), 81–89. doi: 10.1016/j.wep.2014.08.001
- Prognozirovanie urozhaya (2014). Vinogradarstvo i vinodelie. Available at: http://sortov.net/info/prognozirovanie-urozhaya.html
- Shiryaeva, E. Yu. (2008). K voprosu ehkstrapolyacii i interpolyacii prognoznyh znachenij potrebnosti sel'skohozyajstvennyh organizacij. Vestnik rossijskogo agrarnogo zaochnogo universiteta, 4 (9), 204–206.
- Bondarenko, Yu. P. (2011). Prognoz proizvodstva produkcii rastenievodstva v 2011 godu kak ocenka vozmozhnogo vklada regionov Rossii. Regional'nye agrosistemy: ehkonomika i sociologiya, 1. Available at: http://www.iagpran.ru/
- Sutherland, W. J. (2006). Predicting the ecological consequences of environmental change: a review of the methods*. Journal of Applied Ecology, 43 (4), 599–616. doi: 10.1111/j.1365-2664.2006.01182.x
- Orlova, L. V., Cirulev, A. P., Hakimova, E. K., Beketov, Ya. M. (2007). Razrabotka i vnedrenie tekhnologii tochnogo zemledeliya pri vozdelyvanii sel'skohozyajstvennyh kul'tur v adaptivno- landshaftnoj sisteme zemledeliya lesostepi Samarskoj oblasti. Samara: ZAO «Sistemy menedzhmenta i proizvodstva», 247.
- Dabrowski, C., Hunt, F. (2009). Markov Chain Analysis for Large-Scale Grid Systems. National Institute of Standards and Technology, 52. doi: 10.6028/nist.ir.7566
- Matsumura, M. S., Moreira, A. R. B., Vicente, J. V. M. (2010). Forecasting the Yield Curve with Linear Factor Models. Brasilia, No. 223, 40.
- Kutenkov, R. P., Yu. P. Bondarenko (2010). K voprosu srednesrochnogo prognozirovaniya urozhajnosti zernovyh kul'tur. Regional'nye agrosistemy: Ekonomika i sociologiya. Seriya. Problemy prodovol'stvennoj bezopasnosti i razvitiya APK, 1–7.
- Gurman, V., Baturin, V. (2009). Ecological-Economic Model of the Region: Information Technology, Forecasting and Optimal Control. Mathematical Modelling of Natural Phenomena, 4 (5), 144–157. doi: 10.1051/mmnp/20094510
- Zholtkevych, G., Nosov, K., Bespalov, Y., Rak, L., Vysotskaya, E., Balkova, Y., Kolomiychenko, V. (2016). Descriptive Models of System Dynamics. Proceedings of the 12th International Conference on ICT in Education, Research and Industrial Applications. Integration, Harmonization and Knowledge Transfer, 57–72.
- Horeeva, N. K. (2012). Vybor metoda prognozirovaniya dlya prinyatiya upravlencheskih reshenij. Vol. I. Teoriya i praktika sovremennoj nauki. Moscow: Izd-vo «Speckniga», 130–135.
- Rogachev, A. F., Shubnov, M. G. (2012). Ocenka prognoznogo urovnya urozhajnosti na osnove nejrosetevyh modelej dinamiki. Izvestiya Nizhnevolzhskogo agrouniversitetskogo kompleksa: Nauka i vysshee professional'noe obrazovanie, 4, 226–231.
- Yakushev, V. P. (Ed.) (2010). Katalog innovacij i innovacionnyh tekhnologij. GNU Agrofizicheskij nauchno-issledovatel'skij institut Rossel'hozakademii, 48.
- Rogachev, A. F., Shubnov, M. G. (2013). Postroenie nejrosetevyh modelej prognozirovaniya vremennyh ryadov urozhajnosti na osnove avtokorrelyacionnyh funkcij. Sovremennye problemy nauki i obrazovaniya, 5, 1–7.
- Nekos, A. N., Vysockaya, E. V., Panferova, I. Yu., Porvan, A. P., Petuhova, A. L. (2012). Development of the database of is of determination of influence of natural and anthropogenous factors on phytogenesis foodstuffs. Eastern-European Journal of Enterprise Technologies, 3 (2 (57)), 4–10. Available at: http://journals.uran.ua/eejet/article/view/3969/3636
- Dmitrenko, V. P. (2010). Pogoda, klіmat і urozhaj pol'ovih kul'tur. Kyiv: Nіka-Centr, 620.
- Vуsotska, O., Dobrorodnia, G., Gordiyenko, N., Klymenko, V., Chovpan, G., Georgiyants, M. (2016). Studying the mechanisms of formation and development of overweight and obesity for diagnostic information system of obesity. Eastern-European Journal of Enterprise Technologies, 6 (2 (84)), 15–23. doi: 10.15587/1729-4061.2016.85390
- Rysovana, L., Vуsotska, O., Falyova, H., Georgiyants, M., Klymenko, V. (2017). Factor analysis of crisis emergence in family relations, contributing to the development of dyscirculatory encephalopathy. Eastern-European Journal of Enterprise Technologies, 1 (4 (85)), 40–49. doi: 10.15587/1729-4061.2017.91428
- Vysotskaya, E. V., Zholtkevych, G. N., Klochko, T. A., Bespalov, Yu. G., Nosov, K. V. (2016). Unmasking the soil c over's disruption by modeling the dynamics of ground vegetation parameters. Visnyk NTU KPI. Seriya Radiotekhnika. Radioaparato-buduvannya, 64, 101–109.
- Zhemerov, O. O., Shulika, B. O. (2010). Ahroklimatychni umovy vyroshchuvannya vynohradu v rayoni selyshcha Vysokyy za 1994–2010 roky. Visnyk Kharkivs'koho Natsional'noho universytetu imeni V. N. Karazina. Heolohiya – heohrafiya – ekolohiya, 924, 101–110.
- Klimatychnyy kadastr Ukrayiny. Tsentral'na heofizychna observatoriya. Available at: http://www.cgo.kiev.ua/
- Egorov, E. A., Shadrina, Zh. A., Koch'yan, G. A. (2015). Nauchnoe obespechenie razvitiya vinogradarstva i vinodeliya v Rossijskoj Federacii: problemy i puti resheniya. Plodovodstvo i vinogradarstvo Yuga Rossii, 32 (02). Available at: http://journal.kubansad.ru/pdf/15/02/03.pdf
- Buhlmann, P., Yu, B. (2003). Boosting With theL2Loss. Journal of the American Statistical Association, 98 (462), 324–339. doi: 10.1198/016214503000125
- Benoit, K. (2010). Ordinary Least Squares Regression. Quantitative Methods. Available at: http://www.kenbenoit.net/courses/quant1/Quant1_Week8_OLS.pdf
- Fawcett, T. (2006). An introduction to ROC analysis. Pattern Recognition Letters, 27 (8), 861–874. doi: 10.1016/j.patrec.2005.10.010
- Budchenko, A. A., Mazurova, I. Yu., Ilyuhin, V. I., Hrapova, N. P. (2013). ROC-analiz rezul'tatov vyyavleniya antigenov vozbuditelej melioidoza i sapa tverdofaznym immunofermentnym metodom. Problemy osobo opasnyh infekcij, 2, 37–41.
- Norusis, M. J. (2012). IBM SPSS Statistics 19 Guide to Data Analysis. Prentice Hall, 672.
- Kubach, H. K. (2012). Wine Grape Suitability and Quality in a Changing Climate. An Assessment of Adams County, Pennsylvania (1950–2099). Geo-ESS, 35.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2017 Boris Shulika, Andrei Porvan, Olena Visotska, Alla Nekos, Alexander Zhemerov
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.
A license agreement is a document in which the author warrants that he/she owns all copyright for the work (manuscript, article, etc.).
The authors, signing the License Agreement with TECHNOLOGY CENTER PC, have all rights to the further use of their work, provided that they link to our edition in which the work was published.
According to the terms of the License Agreement, the Publisher TECHNOLOGY CENTER PC does not take away your copyrights and receives permission from the authors to use and dissemination of the publication through the world's scientific resources (own electronic resources, scientometric databases, repositories, libraries, etc.).
In the absence of a signed License Agreement or in the absence of this agreement of identifiers allowing to identify the identity of the author, the editors have no right to work with the manuscript.
It is important to remember that there is another type of agreement between authors and publishers – when copyright is transferred from the authors to the publisher. In this case, the authors lose ownership of their work and may not use it in any way.