Control over grape yield in the north-eastern region of Ukraine using mathematical modeling

Authors

DOI:

https://doi.org/10.15587/1729-4061.2017.97969

Keywords:

harvest prediction, logistic regression, information system, control over yield, a grape culture

Abstract

In the practical cultivation of cultures, including grapes, prediction is an inherent attribute, since, under weather actions, it is possible to immediately take measures before one or another degree of the vegetation of culture is affected. In order to develop mathematical software of an information system for determining the probability of reduction in the yield of grapes, we observed the annual variation in temperatures. Moreover, to manage this process, its comparison was conducted with the development of grapevine by the phases of its development for 16 years. By employing the method of binary logistic regression, we revealed three most significant indicators (radiation background, the sum of efficient temperatures during flowering, annual total precipitation in the previous year), which were included into the mathematical model developed. The results obtained make it possible to estimate the risk of reduction in the harvest of grapes, which is grown under conditions of the Northeastern forest-steppe region of Ukraine (Kharkiv region). The developed model as a whole and its separate coefficients are statistically significant. It is also established that all the predictors, in accordance with the chi-squared test, impact the prediction of reduction in the yield of grape. The obtained results might be used when making a decision about the need of change in the agrotechnical methods for the purpose of improving productivity by changing the course of specific phases in the vegetation of grape. 

Author Biographies

Boris Shulika, V. N. Karazin Kharkiv National University Svobody sq., 4, Kharkiv, Ukraine, 61022

Lecturer

Department of Physical Geography and Cartography

Andrei Porvan, Kharkiv National University of Radio Electronics Nauky ave., 14, Kharkiv, Ukraine, 61166

PhD, Associate Professor

Department of Biomedical Engineering

Olena Vysotska, Kharkiv National University of Radio Electronics Nauky ave., 14, Kharkiv, Ukraine, 61166

Doctor of Technical Sciences, Professor

Department of Biomedical Engineering

Alla Nekos, V. N. Karazin Kharkiv National University Svobody sq., 4, Kharkiv, Ukraine, 61022

Doctor of Geography Sciences, Professor, Head of Department

Department of Ecological Safety and Environmental Education 

Alexander Zhemerov, V. N. Karazin Kharkiv National University Svobody sq., 4, Kharkiv, Ukraine, 61022

PhD, Professor

Department of Physical Geography and Cartography

References

  1. Hatfield, J., Takle, G., Grotjahn, R., Holden, P., R. Izaurralde, C., Mader, T. et. al. (2014). Agriculture. Climate Change Impacts in the United States: The Third National Climate Assessment. Global Change Research Program. U.S., 150–174.
  2. Mozell, M. R., Thach, L. (2014). The impact of climate change on the global wine industry: Challenges & solutions. Wine Economics and Policy, 3 (2), 81–89. doi: 10.1016/j.wep.2014.08.001
  3. Prognozirovanie urozhaya (2014). Vinogradarstvo i vinodelie. Available at: http://sortov.net/info/prognozirovanie-urozhaya.html
  4. Shiryaeva, E. Yu. (2008). K voprosu ehkstrapolyacii i interpolyacii prognoznyh znachenij potrebnosti sel'skohozyajstvennyh organizacij. Vestnik rossijskogo agrarnogo zaochnogo universiteta, 4 (9), 204–206.
  5. Bondarenko, Yu. P. (2011). Prognoz proizvodstva produkcii rastenievodstva v 2011 godu kak ocenka vozmozhnogo vklada regionov Rossii. Regional'nye agrosistemy: ehkonomika i sociologiya, 1. Available at: http://www.iagpran.ru/
  6. Sutherland, W. J. (2006). Predicting the ecological consequences of environmental change: a review of the methods*. Journal of Applied Ecology, 43 (4), 599–616. doi: 10.1111/j.1365-2664.2006.01182.x
  7. Orlova, L. V., Cirulev, A. P., Hakimova, E. K., Beketov, Ya. M. (2007). Razrabotka i vnedrenie tekhnologii tochnogo zemledeliya pri vozdelyvanii sel'skohozyajstvennyh kul'tur v adaptivno- landshaftnoj sisteme zemledeliya lesostepi Samarskoj oblasti. Samara: ZAO «Sistemy menedzhmenta i proizvodstva», 247.
  8. Dabrowski, C., Hunt, F. (2009). Markov Chain Analysis for Large-Scale Grid Systems. National Institute of Standards and Technology, 52. doi: 10.6028/nist.ir.7566
  9. Matsumura, M. S., Moreira, A. R. B., Vicente, J. V. M. (2010). Forecasting the Yield Curve with Linear Factor Models. Brasilia, No. 223, 40.
  10. Kutenkov, R. P., Yu. P. Bondarenko (2010). K voprosu srednesrochnogo prognozirovaniya urozhajnosti zernovyh kul'tur. Regional'nye agrosistemy: Ekonomika i sociologiya. Seriya. Problemy prodovol'stvennoj bezopasnosti i razvitiya APK, 1–7.
  11. Gurman, V., Baturin, V. (2009). Ecological-Economic Model of the Region: Information Technology, Forecasting and Optimal Control. Mathematical Modelling of Natural Phenomena, 4 (5), 144–157. doi: 10.1051/mmnp/20094510
  12. Zholtkevych, G., Nosov, K., Bespalov, Y., Rak, L., Vysotskaya, E., Balkova, Y., Kolomiychenko, V. (2016). Descriptive Models of System Dynamics. Proceedings of the 12th International Conference on ICT in Education, Research and Industrial Applications. Integration, Harmonization and Knowledge Transfer, 57–72.
  13. Horeeva, N. K. (2012). Vybor metoda prognozirovaniya dlya prinyatiya upravlencheskih reshenij. Vol. I. Teoriya i praktika sovremennoj nauki. Moscow: Izd-vo «Speckniga», 130–135.
  14. Rogachev, A. F., Shubnov, M. G. (2012). Ocenka prognoznogo urovnya urozhajnosti na osnove nejrosetevyh modelej dinamiki. Izvestiya Nizhnevolzhskogo agrouniversitetskogo kompleksa: Nauka i vysshee professional'noe obrazovanie, 4, 226–231.
  15. Yakushev, V. P. (Ed.) (2010). Katalog innovacij i innovacionnyh tekhnologij. GNU Agrofizicheskij nauchno-issledovatel'skij institut Rossel'hozakademii, 48.
  16. Rogachev, A. F., Shubnov, M. G. (2013). Postroenie nejrosetevyh modelej prognozirovaniya vremennyh ryadov urozhajnosti na osnove avtokorrelyacionnyh funkcij. Sovremennye problemy nauki i obrazovaniya, 5, 1–7.
  17. Nekos, A. N., Vysockaya, E. V., Panferova, I. Yu., Porvan, A. P., Petuhova, A. L. (2012). Development of the database of is of determination of influence of natural and anthropogenous factors on phytogenesis foodstuffs. Eastern-European Journal of Enterprise Technologies, 3 (2 (57)), 4–10. Available at: http://journals.uran.ua/eejet/article/view/3969/3636
  18. Dmitrenko, V. P. (2010). Pogoda, klіmat і urozhaj pol'ovih kul'tur. Kyiv: Nіka-Centr, 620.
  19. Vуsotska, O., Dobrorodnia, G., Gordiyenko, N., Klymenko, V., Chovpan, G., Georgiyants, M. (2016). Studying the mechanisms of formation and development of overweight and obesity for diagnostic information system of obesity. Eastern-European Journal of Enterprise Technologies, 6 (2 (84)), 15–23. doi: 10.15587/1729-4061.2016.85390
  20. Rysovana, L., Vуsotska, O., Falyova, H., Georgiyants, M., Klymenko, V. (2017). Factor analysis of crisis emergence in family relations, contributing to the development of dyscirculatory encephalopathy. Eastern-European Journal of Enterprise Technologies, 1 (4 (85)), 40–49. doi: 10.15587/1729-4061.2017.91428
  21. Vysotskaya, E. V., Zholtkevych, G. N., Klochko, T. A., Bespalov, Yu. G., Nosov, K. V. (2016). Unmasking the soil c over's disruption by modeling the dynamics of ground vegetation parameters. Visnyk NTU KPI. Seriya Radiotekhnika. Radioaparato-buduvannya, 64, 101–109.
  22. Zhemerov, O. O., Shulika, B. O. (2010). Ahroklimatychni umovy vyroshchuvannya vynohradu v rayoni selyshcha Vysokyy za 1994–2010 roky. Visnyk Kharkivs'koho Natsional'noho universytetu imeni V. N. Karazina. Heolohiya – heohrafiya – ekolohiya, 924, 101–110.
  23. Klimatychnyy kadastr Ukrayiny. Tsentral'na heofizychna observatoriya. Available at: http://www.cgo.kiev.ua/
  24. Egorov, E. A., Shadrina, Zh. A., Koch'yan, G. A. (2015). Nauchnoe obespechenie razvitiya vinogradarstva i vinodeliya v Rossijskoj Federacii: problemy i puti resheniya. Plodovodstvo i vinogradarstvo Yuga Rossii, 32 (02). Available at: http://journal.kubansad.ru/pdf/15/02/03.pdf
  25. Buhlmann, P., Yu, B. (2003). Boosting With theL2Loss. Journal of the American Statistical Association, 98 (462), 324–339. doi: 10.1198/016214503000125
  26. Benoit, K. (2010). Ordinary Least Squares Regression. Quantitative Methods. Available at: http://www.kenbenoit.net/courses/quant1/Quant1_Week8_OLS.pdf
  27. Fawcett, T. (2006). An introduction to ROC analysis. Pattern Recognition Letters, 27 (8), 861–874. doi: 10.1016/j.patrec.2005.10.010
  28. Budchenko, A. A., Mazurova, I. Yu., Ilyuhin, V. I., Hrapova, N. P. (2013). ROC-analiz rezul'tatov vyyavleniya antigenov vozbuditelej melioidoza i sapa tverdofaznym immunofermentnym metodom. Problemy osobo opasnyh infekcij, 2, 37–41.
  29. Norusis, M. J. (2012). IBM SPSS Statistics 19 Guide to Data Analysis. Prentice Hall, 672.
  30. Kubach, H. K. (2012). Wine Grape Suitability and Quality in a Changing Climate. An Assessment of Adams County, Pennsylvania (1950–2099). Geo-ESS, 35.

Downloads

Published

2017-04-29

How to Cite

Shulika, B., Porvan, A., Vysotska, O., Nekos, A., & Zhemerov, A. (2017). Control over grape yield in the north-eastern region of Ukraine using mathematical modeling. Eastern-European Journal of Enterprise Technologies, 2(3 (86), 51–59. https://doi.org/10.15587/1729-4061.2017.97969

Issue

Section

Control processes