Study of kinetic parameters for the catalytic cracking process in Y type aerosol catalyst

Authors

DOI:

https://doi.org/10.15587/1729-4061.2017.99022

Keywords:

catalytic cracking, vacuum gas oil, aerosol nanocatalysis, vibrating bed, gasoline and diesel fraction

Abstract

At present, in the petroleum refining industry, catalytic cracking is carried out on the heterogeneous zeolite-containing or aluminosilicate supported catalyst. A well-known deficiency of supported catalyst is the blockage of pores by coke. A aerosol nanocatalysis technology is proposed as the solution to this problem. The basic principle of this technology is complete exclusion of the use of a support from the industrial practice. In this case, the catalyst particles in the process of chemical transformation reach nano dimensions due to the mechanochemical treatment of particles. As a result, we observed an increase in the reaction rate, a decrease in the concentration of catalyst and the time of contact, as well as a rise in productivity by the basic component.

The basic principle of the aerosol nanocatalysis technology makes it possible to successfully repeatedly return the catalyst to the reactor. It is established that the use of zeolite-containing catalysts (type Y) in the form of aerosol does not decrease productivity of the process of catalytic cracking of vacuum gas oil. In this case, an increase in the reaction rate and selectivity is observed. It was found that the temperature and the oscillation frequency make it possible to control the progress of chemical transformation under conditions of AnC technology. The process of catalytic cracking under conditions of AnC technology could be proposed for the implementation either in parallel to the acting installations or as the independently operated unit for small-scale refineries.

Author Biographies

Irene Glikina, Volodymyr Dahl East Ukrainian National University Centralnyi ave., 59-а, Severodonetsk, Ukraine, 93400

Doctor of Technical Sciences, Associate Professor

Department of chemical engineering and environment

Marat Glikin, Volodymyr Dahl East Ukrainian National University Centralnyi ave., 59-а, Severodonetsk, Ukraine, 93400

Doctor of Technical Sciences, Professor

Department of chemical engineering and environment

Sergey Kudryavtsev, Volodymyr Dahl East Ukrainian National University Centralnyi ave., 59-а, Severodonetsk, Ukraine, 93400

PhD, Associate Professor

Department of chemical engineering and environment

References

  1. Smidovich, E. V. (1980). Tehnologija pererabotki nefti i gaza. Ch. 2. Kreking neftjanogo syr'ja i pererabotka uglevodorodnyh gazov. Moscow: Himiya, 328.
  2. Davidjanc, A. A. (1972). Proizvodstvo katalizatorov krekinga i vysokoaktivnyh silikagelej. Moscow: Himiya, 169.
  3. Glazov, A. V., Generalov, V. N., Gordenko, V. I. et. al. (2007). Novye katalizatory kataliticheskogo krekinga serii «Ljuks»: opyt razrabotki, proizvodstva i jekspluatacii na OAO «Sibneft'-Omskij NPZ». Ros. him. zh. (Zh. Ros. him. ob-va im. D. I. Mendeleeva), L1 (4), 57–59.
  4. Doronin, V. P., Lipin, P. V., Potapenko, O. V. et. al. (2014). Perspektivnye razrabotki: katalizatory krekinga i dobavki k nim. Kataliz v promyshlennosti, 5, 82–87.
  5. Kole, C., Kumar, D. S., Khodakovskaya, M. V. (Eds.) (2016). Plant Nanotechnology Principles and Practices. Springer International Publishing Switzerland, 383. doi: 10.1007/978-3-319-42154-4
  6. Schmid, G. (Ed.) (2004). Nanoparticles: From theory to application. Wiley-VCH: Verlag GmbH Weinheim, 434. doi: 10.1002/3527602399
  7. Sergeev, G. B. (2003). Nanohimiya. Мoscow: Izd-vo MGU, 288.
  8. Lin, X., Fan, Y., Shi, G., Liu, H., Bao, X. (2007). Coking and Deactivation Behavior of HZSM-5 Zeolite-Based FCC Gasoline Hydro-Upgrading Catalyst. Energy & Fuels, 21 (5), 2517–2524. doi: 10.1021/ef0700634
  9. Guisnet, M., Ribeiro, F. R. (Eds.) (2011). Deactivation and Regeneration of Zeolite Catalysts. Vol. 9. Catalytic Science Series, 360. doi: 10.1142/p747
  10. Glikin, M. A., Kudryavtsev, S. O., Glikina, I. M., Kashcheev, O. S. (2010). Zrostannia efektyvnosti katalizatoriv krekinhu vakuumnogo gazojliu za umov tekhnologii aerozolnogo nanokatalizu. Katalyz y neftekhymiya, 18, 10–16.
  11. Glikin, M. A. (2014). An alternative technology for catalytical processes. the aerosol nanocatalysis. Eastern-European Journal of Enterprise Technologies, 5 (6 (71)), 4–11. doi: 10.15587/1729-4061.2014.27700
  12. Kashcheyev, O., Glikina, I., Glikin, M. (2013). Behavior of Y Type Zeolite Catalyst under Aerosol Nanocatalysis Conditions. Chemistry & Chemical Technology, 7 (4), 445–450.
  13. Sadeghbeigi, R. (2012). Fluid Catalytic Cracking Handbook. An Expert Guide to the Practical Operation, Design, and Optimization of FCC Units. Elsevier, 352.
  14. Tehnologicheskij reglament kombinirovannoj ustanovvki kataliticheskogo krekinga G-43-107M/1 (2008). Lisichansk, 2008.
  15. Biernat, K. (2015). Criteria for the Quality Assessment of Engine Fuels in Storage and Operating Conditions. Storage Stability of Fuels. doi: 10.5772/59801
  16. Ghosh, P., Hickey, K. J., Jaffe, S. B. (2006). Development of a Detailed Gasoline Composition-Based Octane Model. Industrial & Engineering Chemistry Research, 45 (1), 337–345. doi: 10.1021/ie050811h

Downloads

Published

2017-06-08

How to Cite

Glikina, I., Glikin, M., & Kudryavtsev, S. (2017). Study of kinetic parameters for the catalytic cracking process in Y type aerosol catalyst. Eastern-European Journal of Enterprise Technologies, 3(6 (87), 4–8. https://doi.org/10.15587/1729-4061.2017.99022

Issue

Section

Technology organic and inorganic substances