Development of compositions of urea greases on aminoamides of fatty acids

Authors

  • Leonid Zheleznyi Institute of Bioorganic Chemistry and Petrochemistry of the National Academy of Sciences of Ukraine Kharkivske highway, 50, Kyiv, Ukraine, 02660, Ukraine https://orcid.org/0000-0001-6166-1142
  • Grygorii Pop Institute of Bioorganic Chemistry and Petrochemistry of the National Academy of Sciences of Ukraine Kharkivske highway, 50, Kyiv, Ukraine, 02660, Ukraine https://orcid.org/0000-0002-4099-2695
  • Oleksii Papeikin Institute of Bioorganic Chemistry and Petrochemistry of the National Academy of Sciences of Ukraine Kharkivske highway, 50, Kyiv, Ukraine, 02660, Ukraine https://orcid.org/0000-0002-7939-0237
  • Irina Venger Institute of Bioorganic Chemistry and Petrochemistry of the National Academy of Sciences of Ukraine Kharkivske highway, 50, Kyiv, Ukraine, 02660, Ukraine https://orcid.org/0000-0003-3424-0451
  • Larysa Bodachivska Institute of Bioorganic Chemistry and Petrochemistry of the National Academy of Sciences of Ukraine Kharkivske highway, 50, Kyiv, Ukraine, 02660, Ukraine https://orcid.org/0000-0001-9575-6641

DOI:

https://doi.org/10.15587/1729-4061.2017.99580

Keywords:

urea grease, amino amide, isocyanate, packet of oleo-additives, tribological characteristics, biodegradation

Abstract

In the interaction between stearic acid and diamines of different structure we synthesized amino amides. The composition and chemical structure were defined by the spectrometric methods of analysis. We demonstrated the possibility of applying the nitrogen-containing surface-active substances of plant origin as components of dispersed phase of urea thixotropic plastic systems. It was found that urea – a product of the interaction between amino amides of stearic acid and isocyanate – is an effective thickener of petroleum oils. The obtained urea greases are characterized by high levels of thermal, mechanical and colloidal stability.

A prospect to saturate the market of lubricants with urea greases produced in Ukraine, using the components obtained from available bio raw materials, predetermined the research into creating balanced lubricating compositions of optimal formulation with correctly chosen basic oils, additives, and fillers.

We developed a polyfunctional packet of oleo-additives consisting of sulphur-containing ethyl ester of higher fatty acids of rapeseed oil and the product of condensation of phosphatide concentrate with ethanolamine. It was found that the introduction of these products to the composition of grease on diurea improves its tribological characteristics and anti-oxidation properties, increases the level of biodegradation. Considering the given indicators, the new urea grease is better than some known commercially available analogous products.

Author Biographies

Leonid Zheleznyi, Institute of Bioorganic Chemistry and Petrochemistry of the National Academy of Sciences of Ukraine Kharkivske highway, 50, Kyiv, Ukraine, 02660

PhD

Department of surface-active substances

Grygorii Pop, Institute of Bioorganic Chemistry and Petrochemistry of the National Academy of Sciences of Ukraine Kharkivske highway, 50, Kyiv, Ukraine, 02660

Doctor of Chemical Sciences

Department of surface-active substances 

Oleksii Papeikin, Institute of Bioorganic Chemistry and Petrochemistry of the National Academy of Sciences of Ukraine Kharkivske highway, 50, Kyiv, Ukraine, 02660

PhD

Department of surface-active substances

Irina Venger, Institute of Bioorganic Chemistry and Petrochemistry of the National Academy of Sciences of Ukraine Kharkivske highway, 50, Kyiv, Ukraine, 02660

Senior Researcher

Department of surface-active substances

Larysa Bodachivska, Institute of Bioorganic Chemistry and Petrochemistry of the National Academy of Sciences of Ukraine Kharkivske highway, 50, Kyiv, Ukraine, 02660

PhD

Department of surface-active substances 

References

  1. Mang, T., Dresel, W. (Eds.) (2017). Lubricants and Lubrication. Wiley-VCH Verlag GmbH & Co. KGaA, 1262.
  2. Root, J. C. (2001). Polyurea Greases Thickeners, A Grease Researcherʼs Dream. Eurogrease, 16–20.
  3. Zheleznyi, L. V., Pop, H. S., Papeikin, O. O., Venher, I. O., Velihorska, Yu. V. (2015). Mastylni materialy polipshenoi yakosti na bazi produktiv oleokhimii. Problemy pryrodokorystuvannia, staloho rozvytku ta tekhnohennoi bezpeky rehioniv. Dnipropetrovs'k: Monolyt, 77–80.
  4. Pop, H. S. (2006). Mastylni materialy z roslynnykh olii. Khimichna promyslovist Ukrainy, 5, 22–29.
  5. Pop, H., Donets, O., Zheleznyi, L. (2014). Pobichni produkty vyrobnytstva olii – syrovynna osnova perspektyvnykh poverkhnevo-aktyvnykh rechovyn i mastylnykh materialiv. Postup v naftohazopererobnii ta naftokhimichnii promyslovosti. Lviv: Nats. un-t L'vivs'ka politekhnika, 16–23.
  6. Grease Production Survey Report. For the calendar year 2015, 2014, 2013 and 2012 (2016). NLGI Grease Technology Solutions. LLC Missouri, 30.
  7. Kinoshita, H., Nomura, S., Mishim, M. (1993). Pat. No. US 5462683 A. Grease Composition for Constant Velosity Joint. No. US 08/135,254; declareted: 12.10.1993; published: 31.10.1995, 30.
  8. Okamura, S., Hasegawa, H., Hasegawa, M., Hayashi, Y., Yamamoto, T. (2007). Structural Changes in Urea Greases Electron Microscopic Observation of DUDM [4,4´ bis (3-decyl ureido diphenyl metane)]. NLGI Spokesman, 54 (10), 27–32.
  9. Baum, M. W. (2006). Pat. No. US7923421 B2. Process for Preparing Fine Powder Polyurea and Greases Therefrom. No. US 11/656796; declareted: 24.02.2006; published: 23.02.2007, 7.
  10. Zajezierska, A. (2009). Smary polimocznikowe – nowoczesny gatunek smarow do wielofunkcyjnych zastosowan. Nafta-Gaz, 65 (1), 44–49.
  11. Nesterov, A. V., Oknyna, N. V., Kyryllov, V. V., Yunusov, Z. T., Terekhyn, D. V., Petriakov, A. K. et. al. (2012). Pat. No. 2524691 RU. Plastychnaia smazka s povushennoi rabotosposobnostiu y sposob ee poluchenyia. МPK 7 C10М 159/04, С10М 115/08. No. 2012146014/04; declareted: 30.10.2012; published: 10.08.2014, Bul. No. 22, 8.
  12. Takane, K., Fujinami, Y., Sekiguchi, H., Nakanishi, Y., Suetsugu, Y. (2014). Pat. No. US 20160002558 A1. Grease Composition for Bearing. No. US 14/769,937; declareted: 12.03.2014; published: 07.01.2016, 7.
  13. Kanda, H., Inami, N., Hokao, M., Yokouchi, A., Konno, K. (2013). Pat. No. US 20150307805 A1. Grease – Enclosed Bearing. No. US 14/648,958; declareted: 02.12.2013; published: 29.10.2015, 8.
  14. Numazawa, K., Ohmura, K., Ozaki, T., Tanaka, K. (2003). Pat. No. US20040224859 A1. Urea Grease Composition. No. US 10/728,301; declareted: 04.12.2003; published: 11.11.2004, 11.
  15. Anzai, Y., Takeuchi, K., Fukumura, Y., Hasegawa, Y. (1992). Pat. No. US 5207936 A. Grease Composition for Constant Velosity Joint. No. US 07/834,763; declareted: 13.02.1992; published: 04.05.1993, 8.
  16. Nykyshyna, Z. M., Butovets, V. V., Lendel, Y. V., Strashenko, M. Ya. (1987). Vysokotemperaturnye polymochevynnye smazky. KhTTM, 4, 12–14.
  17. Bodachivskyi, Y. S., Pop, G. S. (2014). Synthesis and structure of sulfurized additives for lubricants. Katalyz y neftekhymyia, 23, 15–20.
  18. Pop, H. S., Bodachivska, L. Yu., Zheleznyi, L. V. (2012). Transformatsiia tryhlitserydiv i fosfatydiv olii aminamy: syntez, vlastyvosti, zastosuvannia. Katalyz y neftekhymyia, 21, 104–109.
  19. Melnik, A. P., Chumak, O. P., Malik, S. H., Khusanov, A. E. (2015). Investigation of interaction of aminoethylethylenediamine with sunflower oil. Eastern-European Journal of Enterprise Technologies, 4 (6 (76)), 44–49. doi: 10.15587/1729-4061.2015.47732
  20. Asadov, Z. H., Salamova, N. V., Rahymov, R. A., Akhmedbekova, S. F. (2014). Poluchenye y svoistva amynoamydov na osnove tryhlytserydov hoviazheho zhyra y ykh fosfatnykh modyfykatorov. Vestnyk VHU. Seryia: Khymyia. Byolohyia. Farmatsyia, 4, 12–16.
  21. Zheleznyi, L. V. (2016). Osoblyvosti syntezu ureatnykh tyksotropnykh system. Ukrainskyi khimichnyi zhurnal, 82 (12), 117–122.
  22. Prech, E., Biulman, F., Affolter, K. (2006). Opredelenye stroenyia orhanycheskykh soedynenyi. Tablytsy spektralnykh dannykh. Мoscow: Мir, 438.
  23. Hurley, S., Cann, P. M. (2000). Starved Lubrication of EHL Contacts – Relationship to Bulk Grease Properties. NLGI Spokesman, 64 (5), 15–23.
  24. Samman, N. (2007). High temperature greases. NLGI Spokesman, 70 (11), 14–23.
  25. Klamann, D. (1988). Smazky y rodstvennуe produkty. Syntez, svoistva, prymenenye, mezhdunarodnye standarty. Мoscow: Himiya, 487.
  26. Emanuel, N. M. (1982). Mekhanyzm deistvyia antyoksydantov. Sovremennye predstavlenyia. Neftekhymyia, 22 (4), 435–447.

Downloads

Published

2017-06-08

How to Cite

Zheleznyi, L., Pop, G., Papeikin, O., Venger, I., & Bodachivska, L. (2017). Development of compositions of urea greases on aminoamides of fatty acids. Eastern-European Journal of Enterprise Technologies, 3(6 (87), 9–14. https://doi.org/10.15587/1729-4061.2017.99580

Issue

Section

Technology organic and inorganic substances